故二面角―AM―N的平面角的余弦值为. 查看更多

 

题目列表(包括答案和解析)

在正三棱锥S-ABC中,M,N分别是SB,SC的中点.若面AMN⊥面SBC,则二面角S-BC-A的平面角的余弦值为
6
6
6
6

查看答案和解析>>

(2013•石景山区二模)如图1,四棱锥P-ABCD中,PD⊥底面ABCD,面ABCD是直角梯形,M为侧棱PD上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(Ⅰ)证明:BC⊥平面PBD;
(Ⅱ)证明:AM∥平面PBC;
(Ⅲ)线段CD上是否存在点N,使AM与BN所成角的余弦值为
3
4
?若存在,找到所有符合要求的点N,并求CN的长;若不存在,说明理由.

查看答案和解析>>

(2011•许昌一模)在等边三角形ABC中,M、N、P分别为AB、AC、BC的中点,沿MN将△AMN折起,使得面AMN与面MNCB所成的二面角的余弦值为
13
,则直线AM与NP所成角α应满足
60°
60°

查看答案和解析>>

三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.
(1)求直线MN与平面A1B1C所成的角;
(2)在线段AC上是否存在一点E,使得二面角E-B1A1-C的余弦值为
3
10
10
?若存在,求出AE的长,若不存在,请说明理由.

查看答案和解析>>

如图,在正三棱锥P-ABC中,M,N分别是侧棱PB、PC上的点,若PM:MB=CN:NP=2:1,且平面AMN⊥平面PBC,则二面角A-BC-P的平面角的余弦值为(  )

查看答案和解析>>


同步练习册答案