10. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一. 选择题(本大题共6小题,每小题7分,共42分)

题号

1

2

3

4

5

6

答案

C

B

C

C

A

A

二. 填空题(本大题共3小题,每小题5分,共15分)

7. 0          8. 36           9.    

三.解答题:解答应写出文字说明,证明过程或演算步骤(本大题共3小题,共43分)

10.(本小题满分14分)

解:(I)设等差数列的公差为,则

                                 …………2分

        解得                                    …………4分

              .                                                             …………5分

                                                    …………7分

   (II)由

             

                                                                  …………10分

                                                        …………12分

             

                                                                       …………14分

11.(本小题满分14分)

解法1:(Ⅰ) 取CD的中点E,连结PE、EM、EA.

∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD           (2分)

∵四边形ABCD是矩形

∴△ADE、△ECM、△ABM均为直角三角形

 

由勾股定理可求得:EM=,AM=,AE=3

                           (4分)

,又在平面ABCD上射影:

∴∠AME=90°,       ∴AM⊥PM                   (6分)

(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM

∴∠PME是二面角P-AM-D的平面角            (8分)

∴tan ∠PME=

∴∠PME=45°

∴二面角P-AM-D为45°;                    (10分)

(Ⅲ)设D点到平面PAM的距离为,连结DM,则

 ,    ∴

                          (12分)

中,由勾股定理可求得PM=

,所以:

即点D到平面PAM的距离为                        (14分)

解法2:(Ⅰ) 以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,

依题意,可得

     ……2分

      (4分)

 

,∴AM⊥PM              (6分)

 (Ⅱ)设,且平面PAM,则

   即

,   

 

,得                     (8分)

,显然平面ABCD,    ∴

结合图形可知,二面角P-AM-D为45°;     (10分)

(Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则

=

即点D到平面PAM的距离为               (14分)

12.(本小题满分15分)

解:(Ⅰ)∵轴,∴,由椭圆的定义得:    (2分)

,∴,                  (4分)

    ∴     

,                                     (6分)

∴所求椭圆C的方程为.                             (7分)

(Ⅱ)由(Ⅰ)知点A(-2,0),点B为(0,-1),设点P的坐标为

,

-4得-

∴点P的轨迹方程为.               (9分)

设点B关于P的轨迹的对称点为,则由轴对称的性质可得:

,解得:,      (12分)

∵点在椭圆上,∴

整理得解得

∴点P的轨迹方程为,                   (14分)

经检验都符合题设,

∴满足条件的点P的轨迹方程为.                 (15分)

 

 

   

 

 

 

 


同步练习册答案