解:(I)由方程消得.????? ①依题意.该方程有两个正实根. 查看更多

 

题目列表(包括答案和解析)

给出问题:已知满足,试判定的形状.某学生的解答如下:

解:(i)由余弦定理可得,

,

是直角三角形.

(ii)设外接圆半径为.由正弦定理可得,原式等价于

是等腰三角形.

综上可知,是等腰直角三角形.

请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果.           .

 

查看答案和解析>>

已知二次函数的二次项系数为,且不等式的解集为,

(1)若方程有两个相等的根,求的解析式;

(2)若的最大值为正数,求的取值范围.

【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),

设出二次函数的解析式,然后利用判别式得到a的值。

第二问中,

解:(1)∵f(x)+2x>0的解集为(1,3),

   ①

由方程

              ②

∵方程②有两个相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故当f(x)的最大值为正数时,实数a的取值范围是

 

查看答案和解析>>

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。

【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得

第二问中可能的取值为0,1,2,3  ,       

 , 

从而得到分布列和期望值

解:(I)由已知条件得 ,即,则的值为

 (Ⅱ)可能的取值为0,1,2,3  ,       

 , 

   的分布列为:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

如图,已知圆锥体的侧面积为,底面半径互相垂直,且是母线的中点.

(1)求圆锥体的体积;

(2)异面直线所成角的大小(结果用反三角函数表示).

【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。

第一问中,由题意,,故

从而体积.2中取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

解:(1)由题意,

从而体积.

(2)如图2,取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

 

查看答案和解析>>

如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点.现测得,并在点测得塔顶的仰角为, 求塔高(精确到

【解析】本试题主要考查了解三角形的运用,利用正弦定理在中,得到,然后在中,利用正切值可知

解:在中,

由正弦定理得:,所以

中,

 

查看答案和解析>>


同步练习册答案