△AMN的面积S△AMN=解法二:(Ⅰ)问解法一:,N(4,0). 查看更多

 

题目列表(包括答案和解析)

如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,
12
)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.

查看答案和解析>>

精英家教网在△ABC中,已知P为中线AD的中点.过点P作一直线分别和边AB、AC交于点M、N,设
AM
=x
AB
AN
=y
AC

(Ⅰ)求证:△ABC的面积S△ABC=
1
2
BA•BC•sinB

(Ⅱ)求当x+y=
4
3
时,求△AMN与△ABC的面积比.

查看答案和解析>>

(理)已知椭圆
x2a2
+y2=1(a>1)
,直线l过点A(-a,0)和点B(a,ta)(t>0)交椭圆于M.直线MO交椭圆于N.
(1)用a,t表示△AMN的面积S;
(2)若t∈[1,2],a为定值,求S的最大值.

查看答案和解析>>

如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,数学公式)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.

查看答案和解析>>

如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.

查看答案和解析>>


同步练习册答案