化简.得曲线的方程为.(Ⅱ)解法一: 查看更多

 

题目列表(包括答案和解析)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

 在直角坐标系中,曲线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为的交点个数为        .

易得,故有2个交点。

 

查看答案和解析>>

(08年芜湖一中)已知在平面直角坐标系中,若在曲线的方程中以为正实数)代替得到曲线的方程,则称曲线关于原点“伸缩”,变换称为“伸缩变换”,称为伸缩比.

(1)已知曲线的方程为,伸缩比,求关于原点“伸缩变换”后所得曲线的标准方程;

(2)射线的方程,如果椭圆经“伸缩变换”后得到椭圆,若射线与椭圆分别交于两点,且,求椭圆的标准方程;

(3)对抛物线,作变换,得抛物线;对作变换得抛物线,如此进行下去,对抛物线作变换,得抛物线.若,求数列的通项公式

查看答案和解析>>

不论θ如何变化,方程y2-6ysinθ-2x-9cos2θ+8cosθ+9=0,都表示顶点在同一曲线上的抛物线,该曲线的方程为
x2
16
+
y2
9
=1
x2
16
+
y2
9
=1

查看答案和解析>>

精英家教网已知实数a在数轴上的位置如图所示,则化简|1-a|+
a2
的结果为(  )
A、1B、-1
C、1-2aD、2a-1

查看答案和解析>>


同步练习册答案