查看更多

 

题目列表(包括答案和解析)

【2012高考真题湖南理21】(本小题满分13分)

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.

(Ⅰ)求曲线C1的方程;

(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

(2009湖南卷文)(本小题满分13分)

对于数列,若存在常数M>0,对任意的,恒有

,            

则称数列数列.

(Ⅰ)首项为1,公比为的等比数列是否为B-数列?请说明理由;

(Ⅱ)设是数列的前n项和.给出下列两组判断:

A组:①数列是B-数列,      ②数列不是B-数列;

B组:③数列是B-数列,      ④数列不是B-数列.

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题.

判断所给命题的真假,并证明你的结论;

(Ⅲ)若数列是B-数列,证明:数列也是B-数列。

查看答案和解析>>

(湖南卷文)(本小题满分13分)

 已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点

为顶点的四边形是一个面积为8的正方形(记为Q).

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。

查看答案和解析>>

(2009湖南卷文)(本小题满分13分)

已知函数的导函数的图象关于直线x=2对称.

(Ⅰ)求b的值;

(Ⅱ)若处取得最小值,记此极小值为,求的定义域和值域。

查看答案和解析>>

(2009湖南卷文)(本小题满分13分)

   已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点

为顶点的四边形是一个面积为8的正方形(记为Q).

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。

查看答案和解析>>


同步练习册答案