所以,存在这样的点P,其坐标为.高二年级数学答题纸题号12345678910答案 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点.
(1)若
BM
MA
=
BN
NC
,求证:无论点P在D1D上如何移动,总有BP⊥MN;
(2)若D1P:PD=1:2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值;
(3)棱DD1上是否总存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.

查看答案和解析>>

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,A(0,b),连接AF1并延长交椭圆C于B点,若
AF1
=
3
2
F1B
AB
AF2
=5

(1)求椭圆C的方程;
(2)设P是直线x=5上的一点,直线PF2交椭圆C于D、E两点,是否存在这样的点P,使得
AD
AE
?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

已知如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.
(1)求抛物线的函数表达式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?
②是否存在这样的点P,使∠OQA为直角?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个不同的点(n∈N*,k、b均为非零常数),其中数列{xn}为等差数列.
(1)求证:数列{yn}是等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求证:a1+a2=1;
(3)设a1+a2+…+an=1,且当i+j=n+1时,恒有ai=aj(i和j都是不大于n的正整数,且i≠j).试探索:在直线l上是否存在这样的点P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?请说明你的理由.

查看答案和解析>>


同步练习册答案