题目列表(包括答案和解析)
已知向量
,设函数![]()
的图象关于点
中心对称,其中
为常数,且
.
(I)求函数
的最小正周期;
(II)若方程
在
上无解,求实数
的取值范围.
设函数![]()
(1)求不等式
的解集;
(2)若关于
的不等式
在
上无解,求实数
的取值范围
设函数![]()
(1)求不等式
的解集;
(2)若关于
的不等式
在
上无解,求实数
的取值范围
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
定义在
上的函数
,如果对任意
,恒有
(
,
)成立,则称
为
阶缩放函数.
(1)已知函数
为二阶缩放函数,且当
时,
,求
的值;
(2)已知函数
为二阶缩放函数,且当
时,
,求证:函数
在
上无零点;
(3)已知函数
为
阶缩放函数,且当
时,
的取值范围是
,求
在
(
)上的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com