18.甲.乙两人玩一种游戏,在装有质地.大小完全相同.编号分别为1.2.3.4.5.6六个球的口袋中.甲先模出一个球.记下编号.放回后乙再模一个球.记下编号.如果两个编号的和为偶数算甲赢.否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率,(2)这种游戏规则公平吗?试说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且
(I)求两人想的数字之差为3的概率;
(II)若两人想的数字相同或相差1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率

查看答案和解析>>

(本小题满分12分)甲、乙两人射击,每次射击击中目标的概率分别是. 现两人玩射击游戏,规则如下:若某人某次射击击中目标,则由他继续射击,否则由对方接替射击. 甲、乙两人共射击3次,且第一次由甲开始射击. 假设每人每次射击击中目标与否均互不影响.(Ⅰ)求3次射击的人依次是甲、甲、乙的概率;(Ⅱ)若射击击中目标一次得1分,否则得0分(含未射击). 用ξ表示乙的总得分,求ξ的分布列和数学期望。

查看答案和解析>>

(本小题满分12分)甲、乙两人射击,每次射击击中目标的概率分别是. 现两人玩射击游戏,规则如下:若某人某次射击击中目标,则由他继续射击,否则由对方接替射击. 甲、乙两人共射击3次,且第一次由甲开始射击. 假设每人每次射击击中目标与否均互不影响.(Ⅰ)求3次射击的人依次是甲、甲、乙的概率;(Ⅱ)若射击击中目标一次得1分,否则得0分(含未射击). 用ξ表示乙的总得分,求ξ的分布列和数学期望。

查看答案和解析>>

(本小题满分12分)

甲乙两位玩家在进行“石头、剪子、布”的游戏,假设两人在游戏时出示三种手势是等可能的。

(Ⅰ)求在1次游戏中甲胜乙的概率;

(Ⅱ)若甲乙双方共进行了3次游戏,随机变量表示甲胜乙的次数,求的分布列和数学期望.

 

查看答案和解析>>

(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中分别为甲、乙摸到的球的编号。

(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;

(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)

(3)   如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.

 

查看答案和解析>>

一.选择题:BACAC  DADBC

解析:

1.,复数  对应的点为,它与原点的距离是,故选B.

2.,但.故选A.

4.把直线向下平移二个单位,则点到直线的距离就相等了,故点的轨迹为抛物线,它的方程为,选A.

5.依题意知,,又,故选C.

6.当时,等价于,当时,等价于,故选D.

7.∵是等差数列,,∴

,故选A.

8.由三视图知该工作台是棱长为80的正方体上面围上一块矩形和两块直角三角形合

板,如右图示,则用去的合板的面积故选D.

9.,故选B.

10.由,可得: 知满足事件A的区域的面积

,而满足所有条件的区域的面积:,从而,

得:,故选C.

二.填空题: 11. 18;12. ;13.;14. ;15..

解析:11.按系统抽样的方法,样本中4位学生的座位号应成等差数列,将4位学生的座位号按从小到大排列,显然6,30不可能相邻,也就是中间插有另一位同学,其座位号为(6+30)÷2=18,故另一位同学的座位号为18.

12.

13.设人经过时间ts后到达点B,这时影长为AB=S,如图由平几的知识

可得=,由导数的意义知人影长度

的变化速度v=(m/s)

14.曲线为抛物线段

借助图形直观易得

15.由切割线定理得,,

连结OC,则,,

三.解答题:

16.解:(1)---3分

∴函数的最小正周期为,值域为。--------------------------------------5分

(2)解法1:依题意得: ---------------------------6分

   ∴

-----------------------------------------8分

------------------------------------------------------------------------------13分

解法2:依题意得: ----①-----------7分

   ∴

---------------------------------9分

-----------②----------------10分

①+②得,∴-------------------------13分

解法3:由,--------------------7分

两边平方得,--------------------------9分

  ∴

--------------------------------------11分

,得

.---------------------------------13分

17.解:(1)∵是长方体  ∴侧面底面

∴四棱锥的高为点P到平面的距离---------------------2分

当点P与点A重合时,四棱锥的高取得最大值,这时四棱锥体积最大----------------------------------------------------------------------------------------------------3分

中∵,------------- 4分

---------------------------------------------------5分

-----------------------------------7分

(2)不论点上的任何位置,都有平面垂直于平面.-------8分

证明如下:由题意知,

    平面

平面   平面平面.------------------- 13分

18.解:(1)设“两个编号和为8”为事件A,则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,又甲、乙两人取出的数字共有6×6=36(个)等可能的结果,

-----------------------------------------------------------------6分

(2)这种游戏规则是公平的。----------------------------------------------------------------------------7分

设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)

所以甲胜的概率,乙胜的概率---------------------------11分

所以这种游戏规则是公平的。---------------------------------------------------------------------------------12分

19.解:(1)由椭圆的方程知,∴点

的坐标为

∵FC是的直径,∴

  ∴ -------------------------2分

-------------------------------------------------3分

解得 -----------------------------------------------------------------------5分

椭圆的离心率---------------------------------6分

(2)∵过点F,B,C三点,∴圆心P既在FC的垂直平分线上,也在BC的垂直平分线上,FC的垂直平分线方程为--------①-----------------------------------7分

∵BC的中点为

∴BC的垂直平分线方程为-----②---------------------9分

由①②得,即--------------------11分

∵P在直线上,∴

  ∴--------------------------------------------------13分

∴椭圆的方程为------------------------------------------------------------------14分

20.解:(1)当时,由

;()------------------------------------------------------2分

时,由.得--------------------------------------4分

---------------------------5分

(2)当时,由<0,解得,---------------------------6分

时,------------------------------8分

∴函数的单调减区间为(-1,0)和(0,1)-----------------------------------------------9分

(3)对,都有,也就是恒成立,-------------------------------------------11分

由(2)知当时,

∴函数都单调递增-----------------------------------------------12分

,∴当时,

同理可得,当时,有

综上所述得,对取得最大值2;

∴实数的取值范围为.----------------------------------------------------------------14分

21.解:(1)由

--------------------------------------2分

,∴不合舍去-------------------------------------------3分

方法1:由

∴数列是首项为,公比为的等比数列----------------------5分

〔方法2:由

∴数列是首项为

同步练习册答案