(I) 求函数和的解析式 查看更多

 

题目列表(包括答案和解析)

已知函数的图象关于原点对称,且

(I)求的解析式;

(II)解不等式

查看答案和解析>>

设函数
(1)求函数y=T(sin(x))和y=sin(T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当x∈[0,]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.

查看答案和解析>>

设函数
(1)求函数y=T(x2)和y=(T(x))2的解析式;
(2)是否存在实数a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当时,求y=T4(x)的解析式;
已知下面正确的命题:当时(i∈N*,1≤i≤15),都有恒成立.
②若方程T4(x)=kx恰有15个不同的实数根,确定k的取值;并求这15个不同的实数根的和.

查看答案和解析>>

设函数数学公式
(1)求函数y=T(sin(数学公式x))和y=sin(数学公式T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当x∈[0,数学公式]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[数学公式数学公式](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn数学公式-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.

查看答案和解析>>

已知函数,且.

(I)求函数的解析式;

(II)求函数的单调区间和极值.

 

查看答案和解析>>

一、1――12    DBDCD    CABAC    DD

二、13.810     14. 6    15. 420    16.

三、解答题

17.解(I)由,得

,得

所以

(II)由正弦定理得

所以的面积

18.解:

      

(I)

6中情况

所以函数有零点的概率为

(II)对称轴,则

函数在区间上是增函数的概率为

19.解:(I)证明:由已知得:

  

(II)证明:取AB中点H,连结GH,FH,

(由线线平行证明亦可)

(III)

20.解(I)

 

(II)

时,是减函数,则恒成立,得

(若用,则必须求导得最值)

21.解:(I)由,得

解得(舍去)

(II)

22.(I)由题设,及不妨设点,其中,于点A 在椭圆上,有,即,解得,得

直线AF1的方程为,整理得

由题设,原点O到直线AF1的距离为,即

代入上式并化简得,得

(II)设点D的坐标为

时,由知,直线的斜率为,所以直线的方程为

,其中,

,的坐标满足方程组

将①式代入②式,得

整理得

于是

由①式得

,将③式和④式代入得

代入上式,整理得

时,直线的方程为的坐标满足方程组

,所以,由知,

,解得,这时,点D的坐标仍满足

综上,点D的轨迹方程为

 


同步练习册答案