查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一、1――12    DBDCD    CABAC    DD

二、13.810     14. 6    15. 420    16.

三、解答题

17.解(I)由,得

,得

所以

(II)由正弦定理得

所以的面积

18.解:

      

(I)

6中情况

所以函数有零点的概率为

(II)对称轴,则

函数在区间上是增函数的概率为

19.解:(I)证明:由已知得:

  

(II)证明:取AB中点H,连结GH,FH,

(由线线平行证明亦可)

(III)

20.解(I)

 

(II)

时,是减函数,则恒成立,得

(若用,则必须求导得最值)

21.解:(I)由,得

解得(舍去)

(II)

22.(I)由题设,及不妨设点,其中,于点A 在椭圆上,有,即,解得,得

直线AF1的方程为,整理得

由题设,原点O到直线AF1的距离为,即

代入上式并化简得,得

(II)设点D的坐标为

时,由知,直线的斜率为,所以直线的方程为

,其中,

,的坐标满足方程组

将①式代入②式,得

整理得

于是

由①式得

,将③式和④式代入得

代入上式,整理得

时,直线的方程为的坐标满足方程组

,所以,由知,

,解得,这时,点D的坐标仍满足

综上,点D的轨迹方程为

 


同步练习册答案