(A)1∶2∶3 (B)1∶∶ 查看更多

 

题目列表(包括答案和解析)

(A)4-2矩阵与变换
已知二阶矩阵M的特征值是λ1=1,λ2=2,属于λ1的一个特征向量是e1=
1
1
,属于λ2的一个特征向量是e2=
-1
2
,点A对应的列向量是a=
1
4

(Ⅰ)设a=me1+ne2,求实数m,n的值.
(Ⅱ)求点A在M5作用下的点的坐标.

(B)4-2极坐标与参数方程
已知直线l的极坐标方程为ρsin(θ-
π
3
)=3
,曲线C的参数方程为
x=cosθ
y=3sinθ
,设P点是曲线C上的任意一点,求P到直线l的距离的最大值.

查看答案和解析>>

(A)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2θ=
π4
,若曲线C1与C2交于A、B两点,则线段AB=
 

(B)若|x-1|+x-2||+|x-3|≥m恒成立,则m的取值范围为
 

查看答案和解析>>

(A)(几何证明选讲选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,则BD的长为=
16
5
16
5

(B)(不等式选讲选做题)关于x的不等式|x-1|+|x-2|≤a2+a+1的解集为空集,则实数a的取值范围是
(-1,0)
(-1,0)

(C)(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=3cosθ
y=sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
3
)=6
.点P在曲线C上,则点P到直线l的距离的最小值为
6-
3
6-
3

查看答案和解析>>

(A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为
13
13


(B)选修4-4:坐标系与参数方程
参数方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中当t为参数时,化为普通方程为
x2-y2=1
x2-y2=1

(C)选修4-5:不等式选讲
不等式|x-2|-|x+1|≤a对于任意x∈R恒成立,则实数a的集合为
{a|a≥3}
{a|a≥3}

查看答案和解析>>

(A)(不等式选做题)
若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(几何证明选做题)
如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为
2
3
3
2
3
3

(C)(坐标系与参数方程选做题) 
在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或-8
2或-8

查看答案和解析>>

 

评分说明:

1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.

2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

4.只给整数分数.选择题不给中间分.

 

一.选择题

(1)D   (2)B   (3)B   (4)C   (5)B   (6)C

(7)C   (8)A   (9)B   (10)D (11)A (12)D

二.填空题

(13)300;  (14)480;  (15)①、②③或①、③②;  (16)103.

三.解答题

(17)解:

(Ⅰ)因为点的坐标为,根据三角函数定义可知

所以.     2分

(Ⅱ)∵,∴. 3分

由余弦定理,得 

.   5分

,∴,∴. 7分

,∴.     9分

故BC的取值范围是.(或写成) 10分

(18)解:

(Ⅰ)记“恰好选到1个曾经参加过社会实践活动的同学”为事件的,则其概率为

.      4分

(Ⅱ)随机变量2,3,4,

;     6分

;  8分

.     10分

∴随机变量的分布列为

2

3

4

P

.     12分

(19)证:

(Ⅰ)因为四边形是矩形∴

又∵ABBC,∴平面.     2分

平面,∴平面CA1B⊥平面A1ABB1.       3分

解:(Ⅱ)过A1A1DB1BD,连接

平面

BCA1D

平面BCC1B1

故∠A1CD为直线与平面所成的角.

       5分

在矩形中,

因为四边形是菱形,∠A1AB=60°, CB=3,AB=4,

. 7分

(Ⅲ)∵,∴平面

到平面的距离即为到平面的距离. 9分

连结交于点O,

∵四边形是菱形,∴

∵平面平面,∴平面

即为到平面的距离. 11分

,∴到平面的距离为.  12分

(20)解:

(Ⅰ)∵,     2分

,得

因为,所以,   4分

从而函数的单调递增区间为. 5分

(Ⅱ)当时,恒有||≤3,即恒有成立.

即当时, 6分

由(Ⅰ)可知,函数的单调递增区间为,单调递减区间为

所以,.        ① 8分

所以,.          ②       10分

由①②,解得

所以,当时,函数上恒有||≤3成立.    12分

(21)解:

(Ⅰ)由已知,

解得  2分

,∴

轴,.  4分

成等比数列.    6分

(Ⅱ)设,由

,得 

   8分

.     10分

,∴.∴,或

∵m>0,∴存在,使得.     12分

(22)解:

(Ⅰ)由题意,

又∵数列为等差数列,且,∴.   2分

,∴.     4分

(Ⅱ)的前几项依次为

=4,∴是数列中的第11项.       6分

(Ⅲ)数列中,项(含)前的所有项的和是:

,     8分

时,其和为

时,其和为.      10分

又因为2009-1077=932=466×2,是2的倍数,

故当时,.    1

 


同步练习册答案