题目列表(包括答案和解析)
已知函数
在
处切线斜率为-1.
(I) 求
的解析式;
(Ⅱ)设函数
的定义域为
,若存在区间
,使得
在
上的值域也是
,则称区间
为函数
的“保值区间”
(ⅰ)证明:当
时,函数
不存在“保值区间”;
(ⅱ)函数
是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.
已知函数
在
处切线斜率为-1.
(I)求
的解析式;
(Ⅱ)设函数
的定义域为
,若存在区间
,使得
在
上的值域也是
,则称区间
为函数
的“保值区间”
(ⅰ)证明:当
时,函数
不存在“保值区间”;
(ⅱ)函数
是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不
存在,说明理由.
设
、![]()
是函数
的两个极值点.
(I)若
,求函数
的解析式;
(II)若
,求
的最大值;
(III)设函数
,
,当
时,
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com