⑵若函数无极值.求实数的取值范围. 查看更多

 

题目列表(包括答案和解析)

设函数,其中a为正实数.

(l)若x=0是函数的极值点,讨论函数的单调性;

(2)若上无最小值,且上是单调增函数,求a的取值范

围;并由此判断曲线与曲线交点个数.

 

查看答案和解析>>

设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若上无最小值,且上是单调增函数,求a的取值范
围;并由此判断曲线与曲线交点个数.

查看答案和解析>>

设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若上无最小值,且上是单调增函数,求a的取值范
围;并由此判断曲线与曲线交点个数.

查看答案和解析>>

已知函数f(x)=
32
ax2,g (x)=-6x+ln x3(a≠0).
(Ⅰ)若函数h (x)=f (x)-g (x) 有两个极值点,求实数a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程g (x)=x f′(x)-3(2a+1)x  无实数解?若存在,求出a的取值范围?若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=1-
a
x
+ln
1
x
(a为实常数).
(Ⅰ)当a=1时,求函数g(x)=f(x)-2x的单调区间;
(Ⅱ)若函数f(x)在区间(0,2)上无极值,求a的取值范围;
(Ⅲ)已知n∈N*且n≥3,求证:ln
n+1
3
1
3
+
1
4
+
1
5
+…+
1
n

查看答案和解析>>

1.C  2.D  3.A  4.A  5.C  6.D  7.D  8.A 9.C10.D   11.B12.D

13.

14.

15.

16.  

17

18.解:

 ⑴ .

⑵ 函数上单调递增,

上单调递减.

所以,当时,;当时,.

的值域为.

19.解:由题意可知圆的方程为,于是.

时,设,则由得,

. 所以的中点坐标为.

又由,且,可知直线与直线垂直,即直线的斜率为.

此时直线的方程为,即.

时,同理可得直线的方程为.

故直线的方程为.

20. 解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因为点均在函数的图像上,所以=3n2-2n.

当n≥2时,an=Sn-Sn-1=(3n2-2n)-

=6n-5.

当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

(Ⅱ)由(Ⅰ)

得知

故Tn

(1-

因此,要使(1-)<)成立的m,必须且仅须满足,即m≥10,所以满足要求的最小正整数m为10.

21.解:⑴设,∵不等式的解集为

……… ①       ……… ②

又∵有两等根,

……… ③     由①②③解得   …………(5分)

又∵

,故.

  …………………………(7分)

⑵由①②得

……………………(9分)

无极值,∴方程

      

解得  …………(12分)

22.(1);

   (2)

   (3)

 

 

 


同步练习册答案