已知函数. 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)当时,利用函数单调性的定义判断并证明的单调性,并求其值域;

(Ⅱ)若对任意,求实数a的取值范围。

查看答案和解析>>

已知函数。(1)判断函数的奇偶性;

(2)设,求证:对于任意,都有

查看答案和解析>>

已知函数

     (1)若函数上的增函数,求实数的取值范围;

     (2)当时,若不等式在区间上恒成立,求实数的取值范围;

     (3)对于函数若存在区间,使时,函数的值域也是,则称上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。

查看答案和解析>>

已知函数

(1)求的单调区间;

(2)如果在区间上的最小值为,求实数以及在该区间上的最大值.

查看答案和解析>>

已知函数。(1)求的最小正周期、的最大值及此时x的集合;(2) 证明:函数的图像关于直线对称。

查看答案和解析>>

一、选择题   CAAD    ABDAB      CB

二、填空题                

三、解答题  

         

         

         

       的周期为,最大值为.

       

         又

         ∴

          ∴ 或

显然事件即表示乙以获胜,

的所有取值为.

 

的分布列为:

3

4

5

数学期望.

   .中点时,平面.

延长交于,则

连结并延长交延长线于

.

中,为中位线,

.

中,

    ∴,即

平面    ∴.            

为平面与平面所成二面

角的平面角。

∴所求二面角的大小为.

.由题意知的方程为,设.

     联立  得.

   ∴.

   由抛物线定义

.抛物线方程

由题意知的方程为.设

.

.

∴当时,的最小值为.

.

        ∴.

       ∴

       ∴

    即

s

    

   

  时,也成立

  ∴

 

 

.

上单调,

上恒成立.

恒成立.

上恒成立.

.

得:

化简得

时,

时,

综上,实数的取值范围是

 


同步练习册答案