题目列表(包括答案和解析)
已知正方体ABCD-A1B1C1D1,
O是底面ABCD对角线的交点.
(1)求证:A1C⊥平面AB1D1;
(2)求
.
![]()
【解析】(1)证明线面垂直,需要证明直线垂直这个平面内的两条相交直线,本题只需证:
即可.
(2)可以利用向量法,也可以根据平面A1ACC1与平面AB1D1垂直,可知取B1D1的中点E,则
就是直线AC与平面AB1D1所成的角.然后解三角形即可.
如图,直线
经过⊙
上的点
,并且
⊙
交直线
于
,
,连接
.
(I)求证:直线
是⊙
的切线;
(II)若
⊙
的半径为
,求
的长.
![]()
【解析】(1)证明
;(II)根据
,![]()
两次相似求得。
已知
.
(1)求
的单调区间;
(2)证明:当
时,
恒成立;
(3)任取两个不相等的正数
,且
,若存在
使
成立,证明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
当k
0时,
>0,所以函数g(x)的增区间为(0,+
),无减区间;
当k>0时,
>0,得x>k;
<0,得0<x<k∴增区间(k,+
)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 当x变化时,h(x),
的变化情况如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
设G(x)=lnx-
(x
1)
=
=![]()
0,当且仅当x=1时,
=0所以G(x) 为减函数, 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,综上,当x
1时, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 设H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t)
<H(1)=0∵
∴
=![]()
∴lnx0 –lnx
>0, ∴x0 >x![]()
已知四棱锥
的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(1)证明:面
面
;
(2)求
与
所成的角;
(3)求面
与面
所成二面角的余弦值.
![]()
【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.
(2)建立空间直角坐标系,写出向量
与
的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.
(3)分别求出平面
的法向量和面
的一个法向量,然后求出两法向量的夹角即可.
近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
|
|
“厨余垃圾”箱 |
“可回收物”箱 |
“其他垃圾”箱 |
|
厨余垃圾 |
400 |
100 |
100 |
|
可回收物 |
30 |
240 |
30 |
|
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差
最大时,写出a,b,c的值(结论不要求证明),并求此时
的值。
(注:
,其中
为数据
的平均数)
【解析】(1)厨余垃圾投放正确的概率约为![]()
(2)设生活垃圾投放错误为事件A,则事件
表示生活垃圾投放正确。事件
的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即
约为
,所以
约为![]()
(3)当
时,方差取得最大值,因为
,
所以![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com