[解析](1)证明:对y = x2 + 2求导得:y′= 2x.则y′即l1.l2的斜率分别为2x1.2x2.又由得x2 ? kx + 2 = 0 ① ∴x1 + x2 = k即2x1 + 2x2 = 2k.∴2x1.k.2x2成等差数列. 查看更多

 

题目列表(包括答案和解析)

已知正方体ABCD-A1B1C1D1

  O是底面ABCD对角线的交点.

(1)求证:A1C⊥平面AB1D1

(2)求.

【解析】(1)证明线面垂直,需要证明直线垂直这个平面内的两条相交直线,本题只需证:即可.

(2)可以利用向量法,也可以根据平面A1ACC1与平面AB1D1垂直,可知取B1D1的中点E,则就是直线AC与平面AB1D1所成的角.然后解三角形即可.

 

查看答案和解析>>

如图,直线经过⊙上的点,并且交直线,连接

(I)求证:直线是⊙的切线;

(II)若的半径为,求的长.

【解析】(1)证明;(II)根据

两次相似求得。

 

查看答案和解析>>

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

已知四棱锥的底面为直角梯形,底面,且的中点。

(1)证明:面

(2)求所成的角;

(3)求面与面所成二面角的余弦值.

【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.

(2)建立空间直角坐标系,写出向量的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.

(3)分别求出平面的法向量和面的一个法向量,然后求出两法向量的夹角即可.

 

查看答案和解析>>

近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):

 

“厨余垃圾”箱

“可回收物”箱

“其他垃圾”箱

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)试估计厨余垃圾投放正确的概率

(Ⅱ)试估计生活垃圾投放错误的概率

(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差最大时,写出a,b,c的值(结论不要求证明),并求此时的值。

(注:,其中为数据的平均数)

【解析】(1)厨余垃圾投放正确的概率约为

(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确。事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即约为,所以约为

(3)当时,方差取得最大值,因为

所以

 

查看答案和解析>>


同步练习册答案