(I)若,,试写出; 查看更多

 

题目列表(包括答案和解析)

已知函数.

(I)指出在定义域R上的奇偶性与单调性(只须写出结论,无须证明);

(II)若abcR,且,试证明:.

查看答案和解析>>

已知函数.
(I)指出在定义域R上的奇偶性与单调性(只须写出结论,无须证明);
(II)若abcR,且,试证明:.

查看答案和解析>>

(2009•大连二模)(I)已知函数f(x)=x-
1
x
,x∈(
1
4
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
图象上的任意两点,且x1<x2
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).

查看答案和解析>>

已知函数f(x)=数学公式(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

查看答案和解析>>

已知函数f(x)=数学公式(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

查看答案和解析>>

 

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

C

C

B

B

A

B

C

D

C

D

二、填空题

13.2     14.-1      15.60      16.③④

三、解答题

17.解:(1)∵

.                …………2分

,             …………4分

,∴.…………5分

   (2)∵

.              …………7分

.    …………9分

.…………10分

18. (1)证明:连结BD交AC于点M,取BE的中点N, 

连结MN,则MN∥ED且MN=ED,依题意,

知AG∥ED且AG=ED,

∴MN∥AG且MN=AG.

故四边形MNAG是平行四边形,

AM∥GN,即AC∥GN,…………4分

又∵

∴ AC∥平面GBE.    …………6分

   (2)延长EG交DA的延长线于H点,

连结BH,作AP⊥BH于P点,连结GP.

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,

GH平面ADEF, GA⊥AD.

∴ GA⊥平面ABCD,由三垂线定理,知GP⊥BH,

故∠GPA就是所求二面角的平面角.                        …………8分

∵ 平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD ,ED⊥AD.

∴ ED⊥平面ABCD,

故∠EBD就是直线BE与平面ABCD成的角,…………10分

知∠EBD=45°,设AB=a,则BE=BD=a.

ABH中:AH=AB= a,

BH=,AP=a.

GPA中:由AG=a

=AP ,GA⊥AP,知∠GPA=45°.

故平面GBE与平面ABCD所成的锐二面角的大小为45°.…………12分

19.解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件是二等品”.

       则A0、A1互斥,且A=A0+A1

故P (A)=P (A0+A1)=P (A0) +P (A1)=(1-p)2+Cp (1-p)=1-p2

依题意,知1-p2=0.96,

又p>0,得p=0.2.…………6分

   (2)若该批产品共100件,由(1)知,其中共有二等品100×0.2=20件.

记C表示事件“取出的2件产品中无二等品”,

则事件B与事件C互斥,依题意,知

P(C)=.故P (B)=1-P(C)=.…………12分

20.解 (1)上单调递增,上单调递减,

      有两根,……3分

               ……6分

   (2)令

      则,            ……………8分

     因为上恒大于0,

       所以上单调递增,

       故,   ,        …………10分

        .               ……………12分

21.解:(1)依题意,知=10b-b =9b.

0,

9b= b.…………4分

    (2)依题意,知=5c3c =2c

2 c

2 c

即    2 c

2c+(n-1) 2c=2 n c.…………8分

   (3)由a、b是互相垂直的单位向量,c = a+b知,b •c= b •( a+b)=0+1=1.

得    anb •2 n c=2 n.记数列{an}的前n项和为Sn

则有    Sn=2×9+4×3+6×1+8×+…+2 n.①…………10分

Sn=2×3+4×1+6×+8×+…+2(n-1)+ 2 n.②

①-②得,Sn=2[9+3+1++…+]- 2 n

故Sn =.…………12分

22.解:(I)设依题意得

      

消去,整理得.…………4分

    当时,方程表示焦点在轴上的椭圆;

    当时,方程表示焦点在轴上的椭圆;

    当时,方程表示圆.        …………6分

   (II)当时,方程为

     设直线的方程为

消去.…………10分

       根据已知可得,故有

*直线的斜率为. …………12分

 

 

 

 


同步练习册答案