21. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

A

A

B

C

D

C

A

填空题

11.     12.   13.-18   14.(2,3)     15.①②⑤

16. 解(1)由题意得, ………2分 ; 从而, ………4分

,所以   ………………………………………6分

(2)由(1)得………………………8分

因为,所以,所以当时,取得最小值为1…10分

的单调递减区间为          ………………………………12分

17. 令的值域为M.

 (Ⅰ)当的定义域为R,有.

    故    …………………………6分

(Ⅱ)当的值域为R,有

   故 或

   ∴   ………………………………………………12分

18. 建立如图所示的直角坐标系,则E(30,0),F(0,20)。

  ∴线段的方程是………3分

 

  在线段上取点,作PQ⊥BC于点Q,PR⊥CD于点R,

设矩形PQCR的面积为s,则s=|PQ|?|PR|=(100-)(80-).…………6分

又∵ ,∴

。……10分

∴当5m时,s有最大值,此时.

故当矩形广场的两边在BC、CD上,一个顶点在线段EF上,

且这个顶点分EF成5:1时,广场的面积最大。        …………12分

 

19.解: (1) 由题知:  , 解得 , 故. ………2分

(2)  , 

,

满足上式.   所以……………7分

(3) 若的等差中项, 则,

从而,    得

因为的减函数, 所以

, 即时, 的增大而减小, 此时最小值为;

, 即时, 的增大而增大, 此时最小值为

, 所以,

即数列最小, 且.   …………12分

20.解:(1)三个函数的最小值依次为

,得 

故方程的两根是

,即

∴  .………………6分

(2)①依题意是方程的根,

故有

且△,得

……………9分

 ;得,

由(1)知,故

∴ 

∴  .………………………13分

21.(Ⅰ)设AB:x=my+2,  A(x1,y1) ,B(x2,y2)

     将x=my+2代入,消x整理,得:

     (m2+2)y2+4my-4=0

    而=

     ==

 取“=”时,显然m=0,此时AB:x=2……………………6分

(Ⅱ)(?)显然是椭圆的右焦点,离心率

         且

         作  点A在椭圆上

       

        

      ……………10分

 

(?)同理 ,由

有  =2

解得:=,故

 所以直线AB: y=(x-2)

即直线AB的方程为………14分

 

 

 

 


同步练习册答案