解析:已知函数的图象与函数(且)的图象关于直线对称,则.记=.当a>1时.若在区间上是增函数.为增函数.令.t∈[, ].要求对称轴.矛盾,当0<a<1时.若在区间上是增函数.为减函数.令.t∈[,].要求对称轴.解得,所以实数的取值范围是,选D. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
1x
+clnx
的图象与x轴相切于点S(s,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)的图象与过坐标原点O的直线l相切于点T(t,f(t)),且f(t)≠0,证明:1<t<e;(注:e是自然对数的底)

查看答案和解析>>

已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).
(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2-16ac<-1;
(2)若b=4,c=
34
时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;
(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.

查看答案和解析>>

已知函数的图象过原点,且关于点(-1,1)成中心对称.

(Ⅰ)求函数的解析式;

(Ⅱ)若数列满足:,求数列的通项

(Ⅲ)若数列的前项和为,判断,与2的大小关系,并证明你的结论.

查看答案和解析>>

已知函数f(x)=
1
x
+clnx
的图象与x轴相切于点S(s,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)的图象与过坐标原点O的直线l相切于点T(t,f(t)),且f(t)≠0,证明:1<t<e;(注:e是自然对数的底)
(Ⅲ)在(Ⅱ)的条件下,记直线ST的倾斜角为α,试证明:
π
4
<α<
12

查看答案和解析>>

已知:在平面直角坐标系xOy中,二次函数y=x2-(m+1)x-m-2的图象与x轴交于A、B两点,点A在x轴的负半轴,点B在x轴的正半轴,与y轴交于点C,且OB=3OA.
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为D,过点A的直线y=
1
2
x+
1
2
与抛物线交于点E.问:在抛物线的对称轴上是否存在这样的点F,使得△ABE与以B、D、F为顶点的三角形相似,若存在,求出点F的坐标;若不存在,请说明理由;
(3)点G(x,1)在抛物线上,求出过点A、B、G的圆的圆心的坐标.

查看答案和解析>>


同步练习册答案