精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+2bx+4c(a,b,c∈R,a≠0).
(1)若函数f(x)的图象与直线y=±x均无公共点,求证:4b2-16ac<-1;
(2)若b=4,c=
34
时,对于给定的负数a,有一个最大的正数M(a),使x∈[0,M(a)]时,都有|f(x)|≤5,求a为何值时M(a)最大?并求M(a)的最大值;
(3)若a>0,且a+b=1,又|x|≤2时,恒有|f(x)|≤2,求f(x)的解析式.
分析:(1)由于函数f(x)的图象与直线y=±x均无公共点,所以ax2+2bx+4c=±x无解,从而△<0,故可证;
(2)把b与c的值代入f(x)中,配方得到顶点式,由a小于0,得到函数有最大值,表示出这个最大值,当最大值大于5时,求出此时a的范围,又最大值小于-
4
a
,M(a)是方程ax2+8x+3=5的较小根,利用求根公式求出M(a)即可判断出M(a)小于
1
2
;当最大值小于等于5时,求出此时a的范围,最大值大于-
4
a
,M(a)是方程ax2+8x+3=-5的较大根,根据求根公式求出M(a)即可判断M(a)小于等于
5
+1
2
,又
5
+1
2
大于
1
2
,即可得到M(a)的最大值;
(3)求出f(x)的导函数,由a大于0,求出函数有最大值让其等于2,得到a与b的关系式,由-2≤f(0)=4a=4a+4b+4c-4(a+b)=f(2)-4≤2-4=-2,得c的值,又因为|f(x)|≤2,所以f(x)≥-2=f(0),即可得到x=0时,函数取得最小值,表示出对称轴让其等于0,即可求得b的值,进而求出a的值,把a,b和c的值代入即可确定出f(x)的解析式
解答:解:(1)证明:∵函数f(x)的图象与直线y=±x均无公共点,
∴ax2+2bx+4c=±x无解
∴△<0
∴4b2-16ac<-1;
 (2)

把b=4,c=
3
4
代入得:f(x)=ax2+8x+3=a (x+
4
a
)
2
+3-
16
a

∵a<0,所以f(x)max=3-
16
a

①当3-
16
a
>5,即-8<a<0时,M(a)满足:-8<a<0且0<M(a)<-
4
a

所以M(a)是方程ax2+8x+3=5的较小根,
则M(a)=
-8+
64+8a
2a
=
2
16+2a
+4
2
4
=
1
2

②当3-
16
a
≤5即a≤-8时,此时M(a)≥-
4
a
,所以M(a)是ax2+8x+3=-5的较大根,
则M(a)=
-8-
64-32a
2a
=
4
4-2a
-2
4
20
-2
=
5
+1
2

当且仅当a=-8时取等号,
由于
5
+1
2
1
2
,因此当且仅当a=-8时,M(a)取最大值
5
+1
2

(3)求得f′(x)=2ax+2b,
∵a>0,∴f(x)max=2a+2b=2,即a+b=1,
则-2≤f(0)=4a=4a+4b+4c-4(a+b)=f(2)-4≤2-4=-2,
∴4c=-2,解得c=-
1
2

又∵|f(x)|≤2,所以f(x)≥-2=f(0)
∴f(x)在x=0处取得最小值,且0∈(-2,2),
∴-
2b
2a
=0,解得b=0,从而a=1,
∴f(x)=x2-2.
点评:本题以函数为载体,考查数形结合的数学思想,会求二次函数在闭区间上的最值,掌握二次函数的图象与性质,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案