(Ⅰ)a>0且-2<<-1,内有两个实根. 解析:本题主要考查二次函数的基本性质与不等式的应用等基础知识.满分14分. 查看更多

 

题目列表(包括答案和解析)

f(x)=
1+ax
1-ax
a>0且a≠1),g(x)是f(x)的反函数.
(Ⅰ)设关于x的方程求loga
t
(x2-1)(7-x)
=g(x)
在区间[2,6]上有实数解,求t的取值范围;
(Ⅱ)当a=e,e为自然对数的底数)时,证明:
n
k=2
g(k)>
2-n-n2
2n(n+1)

(Ⅲ)当0<a≤
1
2
时,试比较|
n
k=1
f(k)-n
|与4的大小,并说明理由.

查看答案和解析>>

f(x)=3ax2+2bx+c,若a+b+c=0.f(0)>0,f(1)>0,

求证: (Ⅰ)a>0且-2<<-1;

(Ⅱ)方程f(x)=0在(0,1)内有两个实根.

查看答案和解析>>

设f(x)=(a>0且a≠1),g(x)是f(x)的反函数.

(Ⅰ)设关于x的方程求lgoa=g(x)在区间[2,6]上有实数解,求t的取值范围;

(Ⅱ)当a=e(e为自然对数的底数)时,证明:

(Ⅲ)当0<α≤时,试比较与4的大小,并说明理由.

查看答案和解析>>

已知f(x)=
3+x
1+x2
,0≤x≤3
f(3),x>3.

(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)-a=0恰有一个实数解,求实数a的取值范围;
(3)已知数列{an}满足:0<an≤3,n∈N*,且a1+a2+a3+…a2009=
2009
3
,若不等式f(a1)+f(a2)+f(a3)+…+f(a2009)≤x-ln(x-p)在x∈(p,+∞)时恒成立,求实数p的最小值.

查看答案和解析>>

已知f(x)=
3+x
1+x2
,0≤x≤3
f(3),x>3.

(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)-a=0恰有一个实数解,求实数a的取值范围;
(3)已知数列{an}满足:0<an≤3,n∈N*,且a1+a2+a3+…a2009=
2009
3
,若不等式f(a1)+f(a2)+f(a3)+…+f(a2009)≤x-ln(x-p)在x∈(p,+∞)时恒成立,求实数p的最小值.

查看答案和解析>>


同步练习册答案