由 ①.②可知.当时... 查看更多

 

题目列表(包括答案和解析)

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

甲、乙 两地相距100km,汽车从甲地匀速行驶到乙地,速度不超过60km/h,已知汽车每小时的运输成本(元)由可变部分和固定部分组成,可变部分与速度x(km/h)的平方成正比例,比例系数为
160
,固定部分为60元.
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.

查看答案和解析>>

甲、乙 两地相距100km,汽车从甲地匀速行驶到乙地,速度不超过60km/h,已知汽车每小时的运输成本(元)由可变部分和固定部分组成,可变部分与速度x(km/h)的平方成正比例,比例系数为
1
60
,固定部分为60元.
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.

查看答案和解析>>

甲、乙 两地相距100km,汽车从甲地匀速行驶到乙地,速度不超过60km/h,已知汽车每小时的运输成本(元)由可变部分和固定部分组成,可变部分与速度x(km/h)的平方成正比例,比例系数为,固定部分为60元.
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.

查看答案和解析>>

甲、乙 两地相距100km,汽车从甲地匀速行驶到乙地,速度不超过60km/h,已知汽车每小时的运输成本(元)由可变部分和固定部分组成,可变部分与速度x(km/h)的平方成正比例,比例系数为,固定部分为60元.
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.

查看答案和解析>>


同步练习册答案