[方法二]参数法:设圆上任意一点坐标为, 曲线上任意一点得坐标为,则 查看更多

 

题目列表(包括答案和解析)

(2011•临沂二模)如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的交点为R.
(I)求动点R的轨迹E的方程;
(II)设E的上顶点为M,直线l交曲线E于P、Q两点,问:是否存在这样的直线l,使点G(1,0)恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

(2012•东城区二模)若圆C的参数方程为
x=3cosθ+1
y=3sinθ
(θ为参数),则圆C的圆心坐标为
(1,0)
(1,0)
,圆C与直线x+y-3=0的交点个数为
2
2

查看答案和解析>>

已知M(-
3
,0),N(
3
,0)
是平面上的两个定点,动点P满足|PM|+|PN|=2
6

(1)求动点P的轨迹方程;
(2)已知圆方程为x2+y2=2,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于A,B两点,O为坐标原点,设Q为AB的中点,求|OQ|长度的取值范围.

查看答案和解析>>

设P(x,y)是曲线C:
x=-2+cosθ
y=sinθ
(θ为参数,0≤θ≤2π)上任意一点,求
y
x
的取值范围.

查看答案和解析>>


同步练习册答案