说明:直线l与抛物线C:2=±2p交点.看其公共方程mx2+nx+q=0或my2+ny+q=0,则△=n2-4mq,于是:l与C相交于两点,相交于一点m=0l与C的对称轴重合或平行,相切于一点,相离 查看更多

 

题目列表(包括答案和解析)

已知点B(0,1),点C(0,-3),直线PB、PC都是圆(x-1)2+y2=1的切线(P点不在y轴上).以原点为顶点,且焦点在x轴上的抛物线C恰好过点P.
(1)求抛物线C的方程;
(2)过点(1,0)作直线l与抛物线C相交于M,N两点,问是否存在定点R,使
RM
RN
为常数?若存在,求出点R的坐标及常数;若不存在,请说明理由.

查看答案和解析>>

已知抛物线C:y2=2px(p>0)的焦点F和椭圆
x2
4
+
y2
3
=1
的右焦点重合.
(1)求抛物线C的方程,并求其准线方程;
(2)设P(1,2),是否存在平行于OP(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OP与l的距离等于
5
5
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

已知直线l:y=x+m,m∈R.
(Ⅰ)若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程;
(Ⅱ)若直线l关于x轴对称的直线为l′,问直线l′与抛物线C:x2=4y是否相切?说明理由.

查看答案和解析>>

已知抛物线方程C:y2=2px(p>0),点F为其焦点,点N(3,1)在抛物线C的内部,设点M是抛物线C上的任意一点,|
MF
|+|
MN
|
的最小值为4.
(1)求抛物线C的方程;
(2)过点F作直线l与抛物线C交于不同两点A、B,与y轴交于点P,且
PF
=λ1
FA
=λ2
FB
,试判断λ12是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.

查看答案和解析>>

(2012•温州一模)如图,过点A(0,-1)的动直线l与抛物线C:x2=4y交于P(x1,y1),Q(x2,y2)两点.
(1)求证:x1x2=4
(2)已知点B(-1,1),直线PB交抛物线C于另外一点M,试问:直线MQ是否经过一个定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>


同步练习册答案