分析 可分别设OA,OB所在的直线方程为:和()由 解得A .同理可得B(以-代替其中的k),直线AB的方程:=.另y=0解得与X轴交于一定点[补充习题] 查看更多

 

题目列表(包括答案和解析)

在以O为坐标原点的直角坐标系中,
OA
AB
,点A(4,-3),B点在第一象限且到x轴的距离为5.
(1) 求向量
AB
的坐标及OB所在的直线方程;
(2) 求圆(x-3)2+(y+1)2=10关于直线OB对称的圆的方程;
(3) 设直线l
AB
为方向向量且过(0,a)点,问是否存在实数a,使得椭圆
x2
16
+y2=1上有两个不同的点关于直线l对称.若不存在,请说明理由; 存在请求出实数a的取值范围.

查看答案和解析>>

平面直角坐标系中,三个顶点的坐标为A(a,0),B(0,b),C(0,c),点D(d,0)在线段OA上(异于端点),设a,b,c,d均为非零实数,直线BD交AC于点E,则OE所在的直线方程为        _      

 

查看答案和解析>>

在以O为坐标原点的直角坐标系中,,点A(4,-3),B点在第一象限且到x轴的距离为5.
(1) 求向量的坐标及OB所在的直线方程;
(2) 求圆(x-3)2+(y+1)2=10关于直线OB对称的圆的方程;
(3) 设直线l为方向向量且过(0,a)点,问是否存在实数a,使得椭圆+y2=1上有两个不同的点关于直线l对称.若不存在,请说明理由; 存在请求出实数a的取值范围.

查看答案和解析>>

设抛物线y2=2px(p>0),Rt△AOB内接于抛物线,O为坐标原点,AO⊥BO,AO所在的直线方程为y=2x,|AB|=5
13
,求抛物线方程.

查看答案和解析>>

已知△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).
(Ⅰ)求点A和点B的坐标;
(Ⅱ)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.

查看答案和解析>>


同步练习册答案