例2.OA是圆C的直径.OA=2a.射线OB与圆交于Q点.和经过A点的切线交于B点.作PQ⊥OA.PB∥OA.求点P的轨迹方程解:[方法一]设P(x,y)是轨迹上任意一点.取∠DOQ=θ.由已知x=OD=OQ.cosθ=OA.cosθ=2acos2θ.y=AB=OA.tanθ=2a.tan2θ,故P点的参数方程为 查看更多

 

题目列表(包括答案和解析)

已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两个动点,O是坐标原点,向量
OA
OB
满足|
OA
+
OB
|=|
OA
-
OB
|
,设圆C的方程为x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)证明线段AB是圆C的直径;
(2)当圆C的圆心到直线x-2y=0的距离的最小值为
2
5
5
时,求p的值.

查看答案和解析>>

已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两个动点,O是坐标原点,向量
OA
OB
满足|
OA
+
OB
|=|
OA
-
OB
|
,设圆C的方程为x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)证明线段AB是圆C的直径;
(2)当圆C的圆心到直线x-2y=0的距离的最小值为
2
5
5
时,求p的值.

查看答案和解析>>

已知圆C经过A(0,1),B(4,a)(a∈R)两点.
(1)当a=3,并且AB是圆C的直径,求此时圆C的标准方程;
(2)当a=1时,圆C与x轴相切,求此时圆C的方程;
(3)如果AB是圆C的直径,证明:无论a取何实数,圆C恒经过除A外的另一个定点,求出这个定点坐标.

查看答案和解析>>

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)已知PA是圆D的切线,切点为A,PA=2,AC是圆D的直径,PC与圆D交于点B,PB=1,则圆O的半径r=
3
3

(B)(极坐标系与参数方程选做题)在极坐标系中,曲线p=4cos(θ-
π
3
)上任意两点间的距离的最大值为
4
4

(C)(不等式选做题)若不等式|x-2|+|x+1|≥α对于任意x∈R恒成立,则实数a的取值范围为
{α|α≤3}
{α|α≤3}

查看答案和解析>>

(二)选择题(考生在A、B、C三小题中选做一题,多做按所做第一题评分)
A.(不等式选讲) 函数f(x)=
|x-2|-1
的定义域为
(-∞,1]∪[3,+∞)
(-∞,1]∪[3,+∞)

B.(坐标系与参数方程)已知极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为
x=
3
5
t
y=1+
4
5
t
(t为参数).则曲线C上的点到直线l的最短距离为
2
5
2
5

C.(几何证明选讲)如图,PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B,PB=1,则AC=
2
3
2
3

查看答案和解析>>


同步练习册答案