(II)若函数在区间上单调递增.求实数的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知函数

(I)若函数在区间上存在极值,求实数a的取值范围;

(II)当时,不等式恒成立,求实数k的取值范围.

(Ⅲ)求证:解:(1),其定义域为,则

时,;当时,

在(0,1)上单调递增,在上单调递减,

即当时,函数取得极大值.                                       (3分)

函数在区间上存在极值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,则

,即上单调递增,                          (7分)

,从而,故上单调递增,       (7分)

          (8分)

(3)由(2)知,当时,恒成立,即

,则,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

 

查看答案和解析>>

已知函数在区间(-1,1)上单调递增,在区间(1,3)上单调递减.
(I)若b=-2,求c的值;
(II)当x∈[-1,3]时,函数f(x)的切线的斜率最小值是-1,求b、c的值.

查看答案和解析>>

已知函数f(x)="ax3" + x2 - ax (且a).

(I) 若函数f(x)在{-∞,-1)和(,+∞)上是增函数¥在()上 是减函数,求a的值;

(II)讨论函数的单调递减区间;

(III)如果存在,使函数h(x)="f(x)+"  ,x (b> - 1),在x = -1处取得最小值,试求b的最大值.

 

查看答案和解析>>

已知函数
(I)若,求的增区间;
(II)若,且函数存在单调递减区间,求的取值范围;
(III)若且关于的方程上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

已知函数

(I)若,求函数的解析式; 

(II)若,且在区间上单调递增,求实数的取值范围.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,60.

    BCBBA     BCDCB    DA

二.填空题:本大题共4小题,每小题5分,共20.

13.   2     14 .          15.  4     16.

三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)

17. (本大题共10分)

解:                       4分

                   8分

故原不等式的解集为                        10分

18. (本小题满分12分)

解:(1),且.

,即,又……..2分

又由                            5分

   (2)由正弦定理得:,               7分

…………9分

,则.则

的取值范围是…………………                   12分

19.(本小题满分12分)

(1)解:设“射手射击1次,击中目标”为事件A

则在3次射击中至少有两次连续击中目标的概率

=                     7分

(2)解:射手第3次击中目标时,恰好射击了4次的概率

                              12分

20. (本小题满分12分)

(Ⅰ)∵

                                  2分

                             4分

                                                 6分

(Ⅱ)∵函数在区间上单调递增

对一切恒成立

方法1  时成立

时,等价于不等式恒成立

时取到等号,所以

                                                     12分

方法2   设

对称轴

时,要满足条件,只要成立

时,,∴

时,只要矛盾

综合得                             12分

21.(本小题满分12分)

解:(Ⅰ)设的公差为d,{Bn}的公比为q,则依题意有q>0且

解得d=2,q=2.

所以, 

                                     6分

(Ⅱ)  错位相减法得:   n=1,2,3…       12分

22.(本小题满分12分)

解:(I)由

       故的方程为点A的坐标为(1,0)                             2分

       设

       由

           整理                                                      4分

  M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆  5分

(II)如图,由题意知的斜率存在且不为零,                            

       设方程为

       将①代入,整理,得

                        7分

       设,则  ②

       令由此可得

       由②知

      

      

       即                                                10分

      

      

       解得

       又

       面积之比的取值范围是                  12分

 

 

 

 

 

 


同步练习册答案