题目列表(包括答案和解析)
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
已知函数f(x)="ax3" + x2 - ax (
且a
).
(I) 若函数f(x)在{-∞,-1)和(
,+∞)上是增函数¥在(
)上
是减函数,求a的值;
(II)讨论函数
的单调递减区间;
(III)如果存在
,使函数h(x)="f(x)+"
,x
(b> - 1),在x = -1处取得最小值,试求b的最大值.
已知函数
![]()
(I)若
,求函数
的解析式;
(II)若
,且
在区间
上单调递增,求实数
的取值范围.
一、选择题:本大题共12小题,每小题5分,共60分.
BCBBA BCDCB DA
二.填空题:本大题共4小题,每小题5分,共20分.
13. 2
14 .
15.
4 16. 
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17. (本大题共10分)
解:
4分
或
8分
故原不等式的解集为
10分
18. (本小题满分12分)
解:(1)
,
,且
.
,即
,又
,
……..2分
又由
,
5分
(2)由正弦定理得:
,
7分
又
,
…………9分
,则
.则
,
即
的取值范围是
…………………
12分
19.(本小题满分12分)
(1)解:设“射手射击1次,击中目标”为事件A
则在3次射击中至少有两次连续击中目标的概率

=
7分
(2)解:射手第3次击中目标时,恰好射击了4次的概率
12分
20. (本小题满分12分)
(Ⅰ)∵
∴
2分
∵
4分
∴
6分
(Ⅱ)∵函数
在区间
上单调递增
∴
对一切
恒成立
方法1
时成立
当
时,等价于不等式
恒成立
令
当
时取到等号,所以
∴
12分
方法2 设
对称轴
当
时,要满足条件,只要
成立
当
时,
,∴
当
时,只要
矛盾
综合得
12分
21.(本小题满分12分)
解:(Ⅰ)设
的公差为d,{Bn}的公比为q,则依题意有q>0且

解得d=2,q=2.
所以,
,
6分
(Ⅱ)
错位相减法得:
n=1,2,3…
12分
22.(本小题满分12分)
解:(I)由

故
的方程为
点A的坐标为(1,0)
2分
设
由
整理
4分
M的轨迹C为以原点为中心,焦点在x轴上,长轴长为
,短轴长为2的椭圆 5分
(II)如图,由题意知
的斜率存在且不为零,
设
方程为
①
将①代入
,整理,得
7分
设
、
,则
②
令
由此可得
由②知

,
即
10分


解得
又
面积之比的取值范围是
12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com