题目列表(包括答案和解析)
(本小题满分12分)
已知直线
经过抛物线
的焦点,且与抛物线交于
两点,点
为坐标原点.
![]()
(Ⅰ)证明:
为钝角.
(Ⅱ)若
的面积为
,求直线
的方程;
(本小题满分12分)
已知直线
过椭圆
的右焦点
,抛物线:
的焦点为椭圆
的上顶点,且直线
交椭圆
于
、
两点,点
、
、
在直线
上的射影依次为点
、
、
.
(1)求椭圆
的方程;
(2)若直线l交y轴于点
,且
,当
变化时,探求
的值是否为定值?若是,求出
的值,否则,说明理由;
(3)连接
、
,试探索当
变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
(本小题满分12分)已知直线
过定点
,且与抛物线
交于
、
两点,抛物线在
、
两点处的切线的相交于点
.
(I)求点
的轨迹方程;
(II)求三角形
面积的最小值.
![]()
(本小题满分12分)
已知直线
经过抛物线
的焦点,且与抛物线交于
两点,点
为坐标原点.![]()
(Ⅰ)证明:
为钝角.
(Ⅱ)若
的面积为
,求直线
的方程;
一、选择题:本大题共12小题,每小题5分,共60分.
BCBBA BCDCB DA
二.填空题:本大题共4小题,每小题5分,共20分.
13. 2
14 .
15.
4 16. 
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17. (本大题共10分)
解:
4分
或
8分
故原不等式的解集为
10分
18. (本小题满分12分)
解:(1)
,
,且
.
,即
,又
,
……..2分
又由
,
5分
(2)由正弦定理得:
,
7分
又
,
…………9分
,则
.则
,
即
的取值范围是
…………………
12分
19.(本小题满分12分)
(1)解:设“射手射击1次,击中目标”为事件A
则在3次射击中至少有两次连续击中目标的概率

=
7分
(2)解:射手第3次击中目标时,恰好射击了4次的概率
12分
20. (本小题满分12分)
(Ⅰ)∵
∴
2分
∵
4分
∴
6分
(Ⅱ)∵函数
在区间
上单调递增
∴
对一切
恒成立
方法1
时成立
当
时,等价于不等式
恒成立
令
当
时取到等号,所以
∴
12分
方法2 设
对称轴
当
时,要满足条件,只要
成立
当
时,
,∴
当
时,只要
矛盾
综合得
12分
21.(本小题满分12分)
解:(Ⅰ)设
的公差为d,{Bn}的公比为q,则依题意有q>0且

解得d=2,q=2.
所以,
,
6分
(Ⅱ)
错位相减法得:
n=1,2,3…
12分
22.(本小题满分12分)
解:(I)由

故
的方程为
点A的坐标为(1,0)
2分
设
由
整理
4分
M的轨迹C为以原点为中心,焦点在x轴上,长轴长为
,短轴长为2的椭圆 5分
(II)如图,由题意知
的斜率存在且不为零,
设
方程为
①
将①代入
,整理,得
7分
设
、
,则
②
令
由此可得
由②知

,
即
10分


解得
又
面积之比的取值范围是
12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com