(Ⅱ)由恒成立. 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;

(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;

(Ⅲ)当x∈(0,e]时,证明:

【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,

假设存在实数a,使有最小值3,利用,对a分类讨论,进行求解得到a的值。

第三问中,

因为,这样利用单调性证明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)见解析

 

查看答案和解析>>

(1)当时,上恒成立,求实数的取值范围;

(2)当时,若函数上恰有两个不同零点,求实数的取值范围;

(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。

 

查看答案和解析>>


(1)当时,上恒成立,求实数的取值范围;
(2)当时,若函数上恰有两个不同零点,求实数的取值范围;
(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。

查看答案和解析>>


(1)当时,上恒成立,求实数的取值范围;
(2)当时,若函数上恰有两个不同零点,求实数的取值范围;
(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。

查看答案和解析>>

对于函数与常数,若恒成立,则称为函数的一个“P数对”;若恒成立,则称为函数的一个“类P数对”.设函数的定义域为,且

(1)若的一个“P数对”,求

(2)若的一个“P数对”,且当,求在区间上的最大值与最小值;

(3)若是增函数,且的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.

+2;②

查看答案和解析>>


同步练习册答案