题目列表(包括答案和解析)
已知m>1,直线
,椭圆C:
,
、
分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点
时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A![]()
、△B![]()
的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线
经过点
(
,0),所以
=
,得
.又因为m>1,所以
,故直线的方程为![]()
第二问中设
,由
,消去x,得
,
则由
,知
<8,且有![]()
由题意知O为![]()
的中点.由
可知
从而
,设M是GH的中点,则M(
).
由题意可知,2|MO|<|GH|,得到范围
已知曲线C:
(m∈R)
(1) 若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2) 设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当
解得
,所以m的取值范围是![]()
(2)当m=4时,曲线C的方程为
,点A,B的坐标分别为
,
由
,得![]()
因为直线与曲线C交于不同的两点,所以![]()
即![]()
设点M,N的坐标分别为
,则![]()
![]()
直线BM的方程为
,点G的坐标为![]()
因为直线AN和直线AG的斜率分别为![]()
所以
![]()
![]()
即
,故A,G,N三点共线。
已知函数
,
(1)设常数
,若
在区间
上是增函数,求
的取值范围;
(2)设集合
,
,若
,求
的取值范围.
【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。
第一问中利用
![]()
利用函数的单调性得到,参数的取值范围。
第二问中,由于
解得参数m的取值范围。
(1)由已知
![]()
又因为常数
,若
在区间
上是增函数故参数![]()
(2)因为集合
,
,若![]()
(1)求f(x)的单调区间;
(2)讨论f(x)的极值.
所以f(-1)=2是极大值,f(1)=-2是极小值.
(2)曲线方程为y=x3-3x,点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x03-3x0.
因f′(x0)=3(x02-1),故切线的方程为y-y0=3(x02-1)(x-x0).
注意到点A(0,16)在切线上,有16-(x03-3x0)=3(x02-1)(0-x0),
化简得x03=-8,解得x0=-2.
所以切点为M(-2,-2),
切线方程为9x-y+16=0.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com