知当且仅当且>0时. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果.
(1)求能听到立体声效果的概率;
(2)求听不到声音的概率.(结果精确到0.01)

查看答案和解析>>

设向量
α
=(a,b),
β
=(m,n),其中a,b,m,n∈R,由不等式|
α
β
|≤|
α
|
•|
β
|恒成立,可以证明(柯西)不等式(am+bn)2≤(a2+b2)(m2+n2)(当且仅当
α
β
,即an=bm时等号成立),己知x,y∈R+,若
x
+3
y
<k•
x+y
恒成立,利用柯西不等式可求得实数k的取值范围是
 

查看答案和解析>>

已知等差数列an中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列an的通项公式;
(2)设由bn=
Sn
n+c
(c≠0)构成的新数列为bn,求证:当且仅当c=-
1
2
时,数列bn是等差数列;
(3)对于(2)中的等差数列bn,设cn=
8
(an+7)•bn
(n∈N*),数列cn的前n项和为Tn,现有数列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求证:存在整数M,使f(n)≤M对一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

(2011•广东模拟)已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1=a4=14.
(1)求数列{an}的通项公式;
(2)设由bn=
Sn
n+c
(c≠0)构成的新数列为{bn},求证:当且仅当c=-
1
2
时,数列{bn}是等差数列;
(3)对于(2)中的等差数列{bn},设cn=
8
(an+7)•bn
(n∈N*),数列{cn}的前n项和为Tn,现有数列{f(n)},f(n)=Tn•(an+3-
8
bn
)•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)对一切n∈N*都成立?若存在,求出n0的值,若不存在,请说明理由.

查看答案和解析>>

(2008•普陀区二模)已知点E,F的坐标分别是(-2,0)、(2,0),直线EP,FP相交于点P,且它们的斜率之积为-
1
4

(1)求证:点P的轨迹在椭圆C:
x2
4
+y2=1
上;
(2)设过原点O的直线AB交(1)题中的椭圆C于点A、B,定点M的坐标为(1,
1
2
)
,试求△MAB面积的最大值,并求此时直线AB的斜率kAB
(3)某同学由(2)题结论为特例作推广,得到如下猜想:
设点M(a,b)(ab≠0)为椭圆C:
x2
4
+y2=1
内一点,过椭圆C中心的直线AB与椭圆分别交于A、B两点.则当且仅当kOM=-kAB时,△MAB的面积取得最大值.
问:此猜想是否正确?若正确,试证明之;若不正确,请说明理由.

查看答案和解析>>


同步练习册答案