题目列表(包括答案和解析)
(本小题满分14分)
如图,已知椭圆
,
是椭圆
的顶点,若椭圆
的离心率
,且过点
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)作直线
,使得
,且与椭圆
相交于
两点(异于椭圆
的顶点),设直线
和直线
的倾斜角分别是
,求证:
.
(本小题满分14分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交椭圆于A、B两个不同点。
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形。
![]()
(本小题满分14分)
如图,已知椭圆![]()
过点(1,
),离心率为
,左右焦点分别为
.点
为直线
:
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
和
为坐标原点.
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
、
斜率分别为![]()
.
(ⅰ)证明:![]()
(ⅱ )问直线
上是否存在一点
,使直线
的斜率
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
(本小题满分14分)
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交椭圆于A、B两个不同点。
![]()
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形。
(本小题满分14分)
如图,已知椭圆
,
是椭圆
的顶点,若椭圆
的离心率
,且过点
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)作直线
,使得
,且与椭圆
相交于
两点(异于椭圆
的顶点),设直线
和直线
的倾斜角分别是
,求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com