我们学过的确定物体位置的方法有平面直角坐标系法和方位角法.现在再给你介绍一种方法:如图① .将射线OX 按逆时针方向绕O点旋转度.得到射线OY.如果P为射线OY上的一点.且OP=.我们规定用()P点位置.问题:(1)在图② 中.如果点Q 在平面内的位置记为Q .那么OQ = .∠XOQ = 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:

(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数               的图象上;平移2次后在函数              的图象上……由此我们知道,平移次后在函数              的图象上.(请填写相应的解析式)
(3)探索运用:点P从点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.

查看答案和解析>>

(本题满分10分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:

(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数               的图象上;平移2次后在函数              的图象上……由此我们知道,平移次后在函数              的图象上.(请填写相应的解析式)
(3)探索运用:点P从点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.

查看答案和解析>>

(本题满分10分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.

(1)实验操作: 在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:

(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数                的图象上;平移2次后在函数               的图象上……由此我们知道,平移次后在函数               的图象上.(请填写相应的解析式)

(3)探索运用:点P从点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.

 

查看答案和解析>>

(本题满分10分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.

(1)实验操作: 在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:

(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数               的图象上;平移2次后在函数              的图象上……由此我们知道,平移次后在函数              的图象上.(请填写相应的解析式)

(3)探索运用:点P从点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.

 

查看答案和解析>>

(10分)在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走。为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高。这样每天生产的服装数量y(套)与时间x(元)的关系如下表:

时间x(天)
1
2
3
4

每天产量y(套)
22
24
26
28

由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.

【小题1】 (1)判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.
【小题2】 (2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?
【小题3】 (3)从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?

查看答案和解析>>


同步练习册答案