(1)求证:以点P为圆心.PM为半径的团与直线相切, 查看更多

 

题目列表(包括答案和解析)

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=
14
x2
上的精英家教网一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM;
(3)是否存在这样的点P,使得△PMN为等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

(2013•晋江市质检)如图,直线y=-x+1与x轴交于点A,与y轴交于点B,点P(a,b)为双曲线y=
12x
上的一点,射线PM⊥x轴于点M,交直线AB于点E,射线PN⊥y轴于点N,交直线AB于点F.
(1)直接写出点E与点F的坐标(用含a、b的代数式表示);
(2)当x>0,且直线AB与线段PN、线段PM都有交点时,设经过E、P、F三点的圆与线段OE相交于点T,连结FT,求证:以点F为圆心,以FT的长为半径的⊙F与OE相切;
(3)①当点P在双曲线第一象限的图象上移动时,求∠EOF的度数;
②当点P在双曲线第三象限的图象上移动时,请直接写出∠EOF的度数.

查看答案和解析>>

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=
1
4
x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y=
1
4
x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
精英家教网

查看答案和解析>>

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y=x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.

查看答案和解析>>

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y=x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.

查看答案和解析>>


同步练习册答案