题目列表(包括答案和解析)
补全证明过程
已知:如图,∠1=∠2,∠C=∠D。
求证:∠A=∠F。
![]()
证明:∵∠1=∠2(已知),
又∠1=∠DMN(___________________),
∴∠2=∠_________(等量代换)。
∴DB∥EC(同位角相等,两直线平行)。
![]()
∴∠A=∠F(两直线平行,内错角相等)。
完成下面推理过程:![]()
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
证明 :∵∠1 =∠2(已知),且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代换).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B( ).
∴AB∥CD(________________________________).
(14分)在研究勾股定理时,同学们都见到过图1,∠
,四边形
、
、
都是正方形.
⑴连结
、
得到图2,则△
≌△
,此时两个三角形全等的判定依据是
▲ ;过
作
⊥
于
,交
于
,则
△
;同理
△
,得
,然后可证得勾股定理.
⑵在图1中,若将三个正方形“退化”为正三角形,得到图3,同学们可以探究△
、△
、△
的面积关系是 ▲ .
⑶为了研究问题的需要,将图1中的
△
也进行“退化”为锐角△
,并擦去正方形
得图4,由
两边向三角形外作正△
、正△
,△
的外接圆与
交于点
,此时
、
、
共线,从△
内一点到
、
、
三个顶点的距离之和最小的点恰为点
(已经被他人证明).设
=3,
=4,
.求
的值.
![]()
已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.
(1)求证:AB=BC;
(2)当BE⊥AD于E时,试证明:BE=AE+CD.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com