(2)是否存在某一时刻t使平移中直角顶点C经过抛物线的顶点?若存在.求出t值,若不存在.请说明理由, (3)直接写出S与t的函数关系式及自变量t的取值范围. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,抛物线与x轴交于点A(-2,0)和点B,与y轴交于点C(0,),线段AC上有一动点P从点A出发,以每秒1个单位长度的速度向点C移动,线段AB上有另一个动点Q从点B出发,以每秒2个单位长度的速度向点A移动,两动点同时出发,设运动时间为t秒.
(1)求该抛物线的解析式;
(2)在整个运动过程中,是否存在某一时刻,使得以A,P,Q为顶点的三角形与△AOC相似?如果存在,请求出对应的t的值;如果不存在,请说明理由.
(3)在y轴上有两点M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,请直接写出相应的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

在平面直角坐标系中,抛物线与x轴交于点A(-2,0)和点B,与y轴交于点C(0,),线段AC上有一动点P从点A出发,以每秒1个单位长度的速度向点C移动,线段AB上有另一个动点Q从点B出发,以每秒2个单位长度的速度向点A移动,两动点同时出发,设运动时间为t秒.
(1)求该抛物线的解析式;
(2)在整个运动过程中,是否存在某一时刻,使得以A,P,Q为顶点的三角形与△AOC相似?如果存在,请求出对应的t的值;如果不存在,请说明理由.
(3)在y轴上有两点M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,请直接写出相应的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=
5
6
x2+bx+c经过点A、B.
(1)求抛物线的表达式.
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC以1cm/s的速度向点C移动,当其中一点到达终点时,另一点也随之停止运动.
①移动开始后,是否存在某一时刻t,使得以O、A、P为顶点的三角形与△BPQ相似,若存在,请求出此时t的值,若不存在,请说明理由.
②移动开始后第t秒时,设S=PQ2(cm2),当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)若此抛物线上有一点D(3,
1
2
),在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的作业宝负半轴和x轴的正半轴上,抛物线y=数学公式x2+bx+c经过点A、B.
(1)求抛物线的表达式.
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC以1cm/s的速度向点C移动,当其中一点到达终点时,另一点也随之停止运动.
①移动开始后,是否存在某一时刻t,使得以O、A、P为顶点的三角形与△BPQ相似,若存在,请求出此时t的值,若不存在,请说明理由.
②移动开始后第t秒时,设S=PQ2(cm2),当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)若此抛物线上有一点D(3,数学公式),在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=x2+bx+c经过点A、B.
(1)求抛物线的表达式.
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC以1cm/s的速度向点C移动,当其中一点到达终点时,另一点也随之停止运动.
①移动开始后,是否存在某一时刻t,使得以O、A、P为顶点的三角形与△BPQ相似,若存在,请求出此时t的值,若不存在,请说明理由.
②移动开始后第t秒时,设S=PQ2(cm2),当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)若此抛物线上有一点D(3,),在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>


同步练习册答案