(1) ①在图1中.求BD的长.②在图2中. P是BC的中点.求PM+PN.(2)图3中.对于BC边上任意一点P.请对点P到两腰距离和(PM+PN)与腰上高(CQ)的大小关系提出猜想.并加以证明. 查看更多

 

题目列表(包括答案和解析)

在△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的角平分线,如图所示
(1)如果AD=2,试求BD和BC的长;
(2)你能猜出AB与DC的数量关系吗?请说明理由。

查看答案和解析>>

在△ABC中, AD是∠BAC的平分线。
(1)如图①,求证:
(2)如图②,若BD=CD,求证: AB=AC;
(3)如图③,若AB=5,AC=4,BC=6.求BD的长。

查看答案和解析>>

如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。 ①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
②点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2)。
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。


图1                                          图2                                                      图3

查看答案和解析>>

如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE,AC和BE相交于点O。
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R。
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似?

查看答案和解析>>

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n。
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2)在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由。

查看答案和解析>>


同步练习册答案