[试题分析一]: 过圆心M作直线:y=x的垂线交与N点.过N点作圆的切线能够满足条件.不难求出夹角为60.[试题分析二]:明白N点后.用图象法解之也很方便[高考考点]: 直线与圆的位置关系.[易错提醒]: N点找不到.[备考提示]: 数形结合这个解题方法在高考中应用的非常普遍.希望加强训练. 查看更多

 

题目列表(包括答案和解析)

【选做题】本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.

A选修4—1:几何证明选讲

自圆O外一点P引圆的一条切线PA,切点为AMPA的中点,

过点M引圆O的割线交该圆于BC两点,且∠BMP=100°,

BPC=40°,求∠MPB的大小.

 

查看答案和解析>>

【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.

甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.

(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;

(2)设经过两次考试后,能被该高校预录取的人数为,求随机变量的期望

查看答案和解析>>

【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.

甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.

(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;

(2)设经过两次考试后,能被该高校预录取的人数为,求随机变量的期望

查看答案和解析>>

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性 女性 合计
反感 10
不反感 8
合计 30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
8
15

(Ⅰ)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,当Χ2<2.706时,没有充分的证据判定变量性别有关,当Χ2>2.706时,有90%的把握判定变量性别有关,当Χ2>3.841时,有95%的把握判定变量性别有关,当Χ2>6.635时,有99%的把握判定变量性别有关)
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

查看答案和解析>>

【必做题】解答时应写出文字说明、证明过程或演算步骤.
某射击运动员向一目标射击,该目标分为3个不同部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.
(1)若射击4次,每次击中目标的概率为
13
且相互独立.设ξ表示目标被击中的次数,求ξ的分布列和数学期望E(ξ);
(2)若射击2次均击中目标,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求事件A发生的概率.

查看答案和解析>>

一、选择题(本大题共8小题,每小题5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空题(本大题共6小题,每小题5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答题(本大题共6小题,共80分)

15.(共13分)

解:(Ⅰ)

因为函数的最小正周期为,且

所以,解得

(Ⅱ)由(Ⅰ)得

因为

所以

所以

因此,即的取值范围为

16.(共14分)

解法一:

(Ⅰ)取中点,连结

平面

平面

(Ⅱ)

,即,且

平面

中点.连结

在平面内的射影,

是二面角的平面角.

中,

二面角的大小为

(Ⅲ)由(Ⅰ)知平面

平面平面

,垂足为

平面平面

平面

的长即为点到平面的距离.

由(Ⅰ)知,又,且

平面

平面

中,

到平面的距离为

解法二:

(Ⅰ)

平面

平面

(Ⅱ)如图,以为原点建立空间直角坐标系

中点,连结

是二面角的平面角.

二面角的大小为

(Ⅲ)

在平面内的射影为正的中心,且的长为点到平面的距离.

如(Ⅱ)建立空间直角坐标系

的坐标为

到平面的距离为

17.(共13分)

解:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么

即甲、乙两人同时参加岗位服务的概率是

(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么

所以,甲、乙两人不在同一岗位服务的概率是

(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,

所以的分布列是

1

3

 

18.(共13分)

解:

,得

,即时,的变化情况如下表:

0

,即时,的变化情况如下表:

0

所以,当时,函数上单调递减,在上单调递增,

上单调递减.

时,函数上单调递减,在上单调递增,在上单调递减.

,即时,,所以函数上单调递减,在上单调递减.

19.(共14分)

解:(Ⅰ)由题意得直线的方程为

因为四边形为菱形,所以

于是可设直线的方程为

因为在椭圆上,

所以,解得

两点坐标分别为

所以

所以的中点坐标为

由四边形为菱形可知,点在直线上,

所以,解得

所以直线的方程为,即

(Ⅱ)因为四边形为菱形,且

所以

所以菱形的面积

由(Ⅰ)可得

所以

所以当时,菱形的面积取得最大值

20.(共13分)

(Ⅰ)解:

(Ⅱ)证明:设每项均是正整数的有穷数列

从而

所以

同步练习册答案