已知曲线C上任意一点M到点F(0.1)的距离比它到直线的距离小1. (1)求曲线C的方程, 查看更多

 

题目列表(包括答案和解析)

已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线m与曲线C交于A,B两点,设
AP
PB

①当λ=1时,求直线m的方程;
②当△AOB的面积为4
2
时(O为坐标原点),求λ的值.

查看答案和解析>>

已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点P(2,2)的直线m与曲线C交于A,B两点,设
AP
PB

①当λ=1时,求直线m的方程;
②当△AOB的面积为4
2
时(O为坐标原点),求直线m的斜率.

查看答案和解析>>

已知曲线C上任意一点M到点F(1,0)的距离比它到直线l:x=-2的距离小1.
(1)求曲线C的方程;
(2)斜率为1的直线l过点F,且与曲线C交与A、B两点,求线段AB的长.

查看答案和解析>>

已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设
AP
PB
.当△AOB的面积为4
2
时(O为坐标原点),求λ的值.

查看答案和解析>>

已知曲线C上任意一点M到点F(1,0)的距离比它到直线x=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)直线l:y=-x+b与曲线C相交于A,B两点,P(1,2),设直线PA、PB的斜率分别为k1,k2,求证:k1+k2为定值.

查看答案和解析>>

19.解:(1)连接B1D1,ABCD―A1B1C1D1为四棱柱,

则在四边形BB1D1D中(如图),

得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

即D1O1⊥B1O

   (2)解法一:连接OD1,△AB1C,△AD1C均为等腰

三角形,

且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

显然:∠D1OB1为所求二面角D1―AC―B1的平面角,

由:OD1=OB1=B1D=2知

解法二:由ABCD―A1B1C1D1为四棱柱,得面BB1D1D⊥面ABCD

所以O1D1在平面ABCD上的射影为BD,由四边形ABCD为正方形,AC⊥BD,由三垂线定理知,O1D1⊥AC。可得D1O1⊥平面AB1C

又因为B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

20.解:(1)曲线C上任意一点M到点F(0,1)的距离比它到直线的距离小1,

可得|MF|等于M到y=-1的距离,由抛物线的定义知,M点的轨迹为

   (2)当直线的斜率不存在时,它与曲线C只有一个交点,不合题意,

    当直线m与x轴不垂直时,设直线m的方程为

   代入    ①

    恒成立,

    设交点A,B的坐标分别为

∴直线m与曲线C恒有两个不同交点。

    ②        ③

故直线m的方程为

21.解:(1)由已知得

   

   (2)

   

   

   (3)