2.重视通性通法.加强解题指导.提高解题能力 在二轮复习中.不能仅仅复习概念和性质.还应该以典型的例题和习题(可以选用04年的各地高考试题和近两年的各地高考模拟试题)为载体.在二轮复习中强化各类问题的常规解法.使学生形成解决各种类型问题的操作范式.数学学习是学生自主学习的过程.解题能力只有通过学生的自主探究才能掌握.所以.在二轮复习中.教师的作用是对学生的解题方法进行引导.点拨和点评.只有这样.才能够实施有效复习. 查看更多

 

题目列表(包括答案和解析)

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组解,二分法求函数零点等.对算法的描述有
①对一类问题都有效;
②对个别问题有效;
③计算可以一步步地进行,每一步都有惟一的结果;
④是一种通法,只要按部就班地做,总能得到结果.

以上正确描述算法的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>

已知等差数列{an}满足a1=8,a5=0,数列{bn}的前n项和为Sn=2n-1-
12
(n∈N*)

①求数列{an}和{bn}的通项公式;
②解不等式an<bn

查看答案和解析>>

对算法的描述:①对一类问题都有效;②算法可执行的步骤必须是有限的;③计算可以一步步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.

以上描述算法的说法中,正确的有(    )

A.1个                   B.2个                  C.3个                   D.4个

查看答案和解析>>


同步练习册答案