(Ⅰ)由题意 PA = BC = 1, AD = 2. -------------- 2分∵ PA⊥面ABCD.∴ PB与面ABCD所成的角为∠PBA = 45°.∴ AB = 1.由∠ABC = ∠BAD = 90°.易得CD = AC = .由勾股定理逆定理得 AC⊥CD. -------------- 3分又∵ PA⊥CD, PA∩AC = A.∴ CD⊥面PAC, -------------- 5分又CD Ì 面PCD. ∴ 面PAC⊥面PCD. -------------- 6分(Ⅱ)分别以AB, AD, AP所在直线分别为x轴, y轴, z轴建立空间直角坐标系.∴ P, D. -------------- 8分 查看更多

 

题目列表(包括答案和解析)

如图,已知圆锥体的侧面积为,底面半径互相垂直,且是母线的中点.

(1)求圆锥体的体积;

(2)异面直线所成角的大小(结果用反三角函数表示).

【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。

第一问中,由题意,,故

从而体积.2中取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

解:(1)由题意,

从而体积.

(2)如图2,取OB中点H,联结PH,AH.

由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得

中,,PH=1/2SB=2,

,所以异面直线SO与P成角的大arctan

 

查看答案和解析>>

某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为
(  )

查看答案和解析>>

设函数f(x)=lnxgx)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]

(Ⅰ)求a、b的值; 

(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]

【解析】第一问解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

第二问,由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

 

查看答案和解析>>

如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B与C重合于O.

(Ⅰ)设Q为AE的中点,证明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二问中,作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值为

 

查看答案和解析>>

 [番茄花园1] (本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足

(Ⅰ)求角C的大小;

(Ⅱ)求的最大值。

 (Ⅰ)解:由题意可知

absinC=,2abcosC.

所以tanC=.

因为0<C<

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

当△ABC为正三角形时取等号,

所以sinA+sinB的最大值是.

 

 


 [番茄花园1]1.

查看答案和解析>>


同步练习册答案