命题“ax2-2ax + 3 > 0恒成立 是假命题, 则实数的取值范围是 查看更多

 

题目列表(包括答案和解析)

下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=
2009-x2
+
x2-2009
既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x•y)=x•f(y)+y•f(x),则f(x)是奇函数.其中所有正确命题的序号是
 

查看答案和解析>>

关于二次函数学生甲有以下观点:①二次函数必有最大值;②二次函数必有最小值;③闭区间上的二次函数必定同时存在最大值,最小值;④对于命题③,最值一定在区间端点取得.你认为学生甲正确的观点序号是
 
.根据你的判断试解决下述问题:已知函数f(x)=ax2+(2a-1)x+1在[-
32
,2]
上的最大值为3,求实数a的值.

查看答案和解析>>

已知命题ax2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p”或“q”是假命题,求a的取值范围.

查看答案和解析>>

下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞]时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f=x•f(y)+y•f(x),则f(x)是奇函数.其中所有正确命题的序号是    

查看答案和解析>>

下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞]时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f=x•f(y)+y•f(x),则f(x)是奇函数.其中所有正确命题的序号是    

查看答案和解析>>


同步练习册答案