∴短半轴b=.------------------------ 3分 查看更多

 

题目列表(包括答案和解析)

如图,已知椭圆的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

(13分)已知圆Ox2y2=3的半径等于椭圆E=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线lyx的距离为,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1y1),B(x2y2).

(1)求椭圆E的方程;
(2)求证:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

(13分)已知圆Ox2y2=3的半径等于椭圆E=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线lyx的距离为,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1y1),B(x2y2).

(1)求椭圆E的方程;
(2)求证:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

(13)已知圆Ox2y23的半径等于椭圆E1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线lyx的距离为,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1y1)B(x2y2)

(1)求椭圆E的方程;

(2)求证:|AF||BF||BM||AM|.

 

查看答案和解析>>

已知椭圆C:=1(a>b>1)的离心率为e=,以原点为圆心,椭圆短半轴长为半径的圆与直线
x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点。
(1)求椭圆的标准方程;
(2)若P与A,B均不重合,设直线的斜率分别为k1,k2,求k1·k2的值;
(3)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程,并说明轨迹是什么曲线。

查看答案和解析>>


同步练习册答案