(2)设=.求a+c的值. 查看更多

 

题目列表(包括答案和解析)

(16分)设,若a,b,c分别为的相应三边长,

(1)求实数x的取值范围;

(2)求的最大内角;

(3)设的外接圆半径为R,内切圆半径为r,求的取值范围。

查看答案和解析>>

设函数        a  为 常数且a∈(0,1).

(1)       当a=时,求f(f());      

(2)       若x0满足f(f(x0))= x0,但f(x0)≠x0则称x0为f(x)的二阶周期点,证明函数有且仅有两个二阶周期点,并求二阶周期点x1,x2

(3)       对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[,]上的最大值和最小值。

查看答案和解析>>

中,角A、B、C的对边分别为

(1)求角B;

(2)设的取值范围。

查看答案和解析>>

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。

查看答案和解析>>

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P、A、B三点互不相同)且满足k2+λk1=0(λ≠0且
λ≠-1),
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围。

查看答案和解析>>

 

 

一、选择题

 1―6  DBDCDD   7―12  ADCDCD

二、填空题

13.3   14.       15.-25    16.

三、解答题

17.(满分12分)

解:       ∴       …………3分

  ∴不等式a+2     ∵a<0    ∴<1+  ……5分

①当时,<0,不等式无解

②当时,<0无解

③ 当时,

xx                …………10分

综上所述,原不等式的解集为:

①当时,不等式无解

②当时,不等式解集为

xx                …………12分

18.(满分12分)

(1)甲乙两队各五名球员,一个间隔一个排序,出场序的种数是……3分

 

(2)甲队五名球员,取连续两名的方法数为4。若不考虑乙队,甲队有具只有连续两名队员射中的概率为                      …………………7分

(3)甲、乙两队点球罚完,再次出现平局,可能的情况以下6种,即均未中球,均中1球,…均中5球,故所求概率为

       …………………12分

19.(1)∵AA1⊥面ABCD, ∴AA1⊥BD,

又BD⊥AD, ∴BD⊥A1D                                  …………………2分

又A1D⊥BE,∴A1D⊥平面BDE                              …………………3分

(2)连B1C,则B1C⊥BE,易证Rt△CBE∽Rt△CBB1,

,又E为CC1中点,∴

                                           ……………………5分

取CD中点M,连BM,则BM⊥平面CD1,作MN⊥DE于N,连NB,则∠BNM是二面角B―DE―C的平面角            ……………………7分

Rt△CED中,易求得MN=中,∠BNM=

∴∠BNM=arctan                                       …………………10分

(3)易证BN长就是点B到平面A1DE的距离                    …………………11分

∴∠BN=                           …………………12分

20.(满分12分)

解:(Ⅰ)由 。           …………………2分

b2=ac及正弦定理得sin2B=sin A sin C.

于是    cot A + cot C =

=

=

=

=

=

=                              …………………7分

(Ⅱ)由      ?      =,得,又由,可得,即

由余弦定理

                                …………………9分

所以                                          …………………12分

21.(满分13分)

解:(Ⅰ)              …………………4分

(Ⅱ)…………………6分

=                                       …………………8分

                                     …………………9分

∴数列是等比数列,且       …………………10分

(Ⅲ)由(Ⅱ)得:    …………………11分

………………12分

                        ………………13分

22.(满分13分)

解:(Ⅰ)∵椭圆方程为ab>0,c>0,c2=a2-b2

,FP的中点D的坐标为()……2分

直线AB的方程为:∵D在直线AB上∴……3分

化简得    ∴…………………4分

(Ⅱ)…………5分   

       =-3  ∴                                        …………………6分

由(Ⅰ)得:                                                              …………………7分

∴椭圆方程为:                                                  …………………8分

(Ⅲ)设直线QA1QA2斜率分别为k1、k2,则

解得……10分由

解得

直线MN的方程为y=0

化简得

  ∴

即直线MN与x轴交于定点()      ……………13分


同步练习册答案