VF―ABCD=?DE?S□ABCD=?2?32=6.?∴V多面体=+6=.选D.? 查看更多

 

题目列表(包括答案和解析)

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,直角梯形ABCD所在的平面和圆O所在的平面互相垂直,∠CBA=90°,AB=BC=2,AD=EF=1.
(1)证明:AF⊥平面CBF;
(2)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE

查看答案和解析>>

精英家教网如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.
(1)求四棱锥F-ABCD的体积VF-ABCD
(2)求证:平面AFC⊥平面CBF.
(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.

查看答案和解析>>

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.
(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

精英家教网如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE

查看答案和解析>>

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;

(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

 

查看答案和解析>>


同步练习册答案