0  434199  434207  434213  434217  434223  434225  434229  434235  434237  434243  434249  434253  434255  434259  434265  434267  434273  434277  434279  434283  434285  434289  434291  434293  434294  434295  434297  434298  434299  434301  434303  434307  434309  434313  434315  434319  434325  434327  434333  434337  434339  434343  434349  434355  434357  434363  434367  434369  434375  434379  434385  434393  447090 

22. Just because they make more money than I do, _______ they seem to look down on me.

A. so                      B. and                C. but          D. 不填

试题详情

第一节 单项填空(共15小题;每小题1分,满分15分)

从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。

21. He suggested the problem worth paying attention _______ at the meeting.

A. to be discussed           B. to discussing      C. to discuss        D. to being discussed

试题详情

21.本小题主要考察函数、函数的导数和不等式等基础知识,考察综合运用数学知识进行推理论证的能力和份额类讨论的思想(满分14分)

(I)解:,由处有极值

可得

解得

,则,此时没有极值;

,则

变化时,的变化情况如下表:





1



0
+
0



极小值

极大值

时,有极大值,故即为所求。

(Ⅱ)证法1:

时,函数的对称轴位于区间之外。

上的最值在两端点处取得

应是中较大的一个

证法2(反证法):因为,所以函数的对称轴位于区间之外,

上的最值在两端点处取得。

应是中较大的一个

假设,则

   

将上述两式相加得:

,导致矛盾,

(Ⅲ)解法1:

(1)当时,由(Ⅱ)可知

(2)当时,函数)的对称轴位于区间内,   

此时

①若

于是

②若,则

于是

综上,对任意的都有

而当时,在区间上的最大值

对任意的恒成立的的最大值为

解法2:

(1)当时,由(Ⅱ)可知;   

(2)当时,函数的对称轴位于区间内,

此时

   

,即

下同解法1

试题详情

21.(本小题满分14分)   

      已知关于x的函数f(x)=+bx2+cx+bc,其导函数为f+(x).令g(x)=∣f+(x) ∣,记函数g(x)在区间[-1、1]上的最大值为M.

  (Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值:

  (Ⅱ)若∣b∣>1,证明对任意的c,都有M>2:    

  (Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值。

试题详情

20.(本小题满分13分)

如图,过抛物线y2=2PX(P>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线L作垂线,垂足分别为M1、N1  

(Ⅰ)求证:FM1⊥FN1:

(Ⅱ)记△FMM1、△FM1N1、△FN N1的面积分别为S1、、S2、,S3,试判断S22=4S1S3是否成立,并证明你的结论。   

20题。本小题主要考查抛物线的概念,抛物线的几何性质等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力(满分13分)

(1)    证法1:由抛物线的定义得

   

        2分

如图,设准线l与x的交点为

证法2:依题意,焦点为准线l的方程为

设点M,N的坐标分别为直线MN的方程为,则有

  得

于是,

,故

(Ⅱ)成立,证明如下:

证法1:设,则由抛物线的定义得

,于是

代入上式化简可得   

,此式恒成立。

成立。

证法2:如图,设直线M的倾角为

则由抛物线的定义得

于是

中,由余弦定理可得

由(I)的结论,得

,得证。

试题详情

19.(本小题满分12分)

 已知{an}是一个公差大于0的等差数列,且满足a3a6=55,  a2+a7=16.

(Ⅰ)求数列{an}的通项公式:

(Ⅱ)若数列{an}和数列{bn}满足等式:an,求数列{bn}的前n项和Sn    

解(1)解:设等差数列的公差为d,则依题设d>0    

由a2+a7=16.得               ①

          ②

由①得将其代入②得。即

   

(2)令

两式相减得

于是

=-4=

试题详情

18. 本小题主要考察空间直线与直线、直线与平面的位置关系和二面角等基础知识,考查空间想象能力、推理论证能力和运算求解能力。(满分12分)

 (Ⅰ)证发1:连接BD,由底面是正方形可得ACBD。

  SD平面ABCD,BD是BE在平面ABCD上的射影,

由三垂线定理得ACBE.

(II)解法1:SD平面ABCD,CD平面ABCD, SDCD.

又底面ABCD是正方形, CDAD,又SDAD=D,CD平面SAD。

过点D在平面SAD内做DFAE于F,连接CF,则CFAE,

CFD是二面角C-AE-D 的平面角,即CFD=60°

在Rt△ADE中,AD=, DE= , AE=

于是,DF=

在Rt△CDF中,由cot60°=

,    即=3    

, 解得=

试题详情

18. (本小题满分12分)

  如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1).    

(Ⅰ)求证:对任意的(0、1),都有AC⊥BE:

(Ⅱ)若二面角C-AE-D的大小为600C,求的值。

试题详情


同步练习册答案