0  444356  444364  444370  444374  444380  444382  444386  444392  444394  444400  444406  444410  444412  444416  444422  444424  444430  444434  444436  444440  444442  444446  444448  444450  444451  444452  444454  444455  444456  444458  444460  444464  444466  444470  444472  444476  444482  444484  444490  444494  444496  444500  444506  444512  444514  444520  444524  444526  444532  444536  444542  444550  447090 

1.下列在厨房中发生的变化是物理变化的是

A.榨取果汁       B.冬瓜腐烂     C.铁锅生锈      D.煤气燃烧

试题详情

29.问题解决

解:方法一:如图(1-1),连接

 

    由题设,得四边形和四边形关于直线对称.

    ∴垂直平分.∴··········································· 1分

    ∵四边形是正方形,∴

    ∵

     在中,

    ∴解得,即················································ 3分

    在和在中,

······································································· 5分

    设

    解得················································································· 6分

    ∴··································································································· 7分

    方法二:同方法一,········································································· 3分

    如图(1-2),过点于点,连接

 

∴四边形是平行四边形.

    ∴

    同理,四边形也是平行四边形.∴

  ∵

  

  在

  ····························· 5分

······························································ 6分

································································································· 7分

类比归纳

(或);·········································································· 10分

联系拓广

···································································································· 12分

试题详情

26.(1)解:由点坐标为

点坐标为

··················································································· (2分)

解得点的坐标为···································· (3分)

··························································· (4分)

  (2)解:∵点上且

       ∴点坐标为······················································································ (5分)

又∵点上且

点坐标为······················································································ (6分)

··········································································· (7分)

  (3)解法一:时,如图1,矩形重叠部分为五边形(时,为四边形).过,则

 

··································································· (10分)

(2009年山西省太原市)29.(本小题满分12分)

问题解决

如图(1),将正方形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕.当时,求的值.

 

类比归纳

在图(1)中,若的值等于     ;若的值等于     ;若(为整数),则的值等于     .(用含的式子表示)

联系拓广

  如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕的值等于     .(用含的式子表示)

 

试题详情

26.(2009年山西省)(本题14分)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.

   (1)求的面积;

(2)求矩形的边的长;

(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设

移动时间为秒,矩形重叠部分的面积为,求

的函数关系式,并写出相应的的取值范围.

试题详情

23.(2009年河南省)(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bxA、C两点.  

(1)直接写出点A的坐标,并求出抛物线的解析式;

   (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD

向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点PPEABAC于点E

   ①过点EEFAD于点F,交抛物线于点G.t为何值时,线段EG最长?

②连接EQ.在点PQ运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?

请直接写出相应的t值.

解.(1)点A的坐标为(4,8)         …………………1分

将A  (4,8)、C(8,0)两点坐标分别代入y=ax2+bx

       8=16a+4b

     得             

     0=64a+8b

     解 得a=-,b=4

∴抛物线的解析式为:y=-x2+4x      …………………3分

(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=

PE=AP=t.PB=8-t

∴点E的坐标为(4+t,8-t).

∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. …………………5分

∴EG=-t2+8-(8-t)

   =-t2+t.

∵-<0,∴当t=4时,线段EG最长为2.       …………………7分

②共有三个时刻.                  …………………8分

t1= t2=t3= .          …………………11分

试题详情

26.解:(1)1,

(2)作QFAC于点F,如图3, AQ = CP= t,∴

由△AQF∽△ABC

.∴

(3)能.

  ①当DEQB时,如图4.

  ∵DEPQ,∴PQQB,四边形QBED是直角梯形.

   此时∠AQP=90°.

由△APQ ∽△ABC,得

. 解得

②如图5,当PQBC时,DEBC,四边形QBED是直角梯形.

此时∠APQ =90°.

由△AQP ∽△ABC,得

. 解得.                                                

(4)

[注:①点PCA运动,DE经过点C

方法一、连接QC,作QGBC于点G,如图6.

,得,解得

方法二、由,得,进而可得

,得,∴.∴

②点PAC运动,DE经过点C,如图7.

]

试题详情

26.(2009年河北省)(本小题满分12分)

如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着PQ的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点PQ同时出发,当点Q到达点B时停止运动,点P也随之停止.设点PQ运动的时间是t秒(t>0).

(1)当t = 2时,AP =    ,点QAC的距离是   

(2)在点PCA运动的过程中,求△APQ的面积S

t的函数关系式;(不必写出t的取值范围)

(3)在点EBC运动的过程中,四边形QBED能否成

为直角梯形?若能,求t的值.若不能,请说明理由;

(4)当DE经过点C 时,请直接写出t的值.

试题详情

26.解:(1)由已知,得

.············································································································ (1分)

设过点的抛物线的解析式为

将点的坐标代入,得

和点的坐标分别代入,得

··································································································· (2分)

解这个方程组,得

故抛物线的解析式为.··························································· (3分)

(2)成立.························································································· (4分)

在该抛物线上,且它的横坐标为

的纵坐标为.······················································································· (5分)

的解析式为

将点的坐标分别代入,得

  解得

的解析式为.········································································ (6分)

.··························································································· (7分)

过点于点

.··········································································································· (8分)

(3)上,,则设

①若,则

解得,此时点与点重合.

.··········································································································· (9分)

②若,则

解得 ,此时轴.

与该抛物线在第一象限内的交点的横坐标为1,

的纵坐标为

.······································································································· (10分)

③若,则

解得,此时是等腰直角三角形.

过点轴于点

,设

解得(舍去).

.··········································· (12分)

综上所述,存在三个满足条件的点

(2009年重庆綦江县)26.(11分)如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点轴正半轴上,连结

(1)求该抛物线的解析式;

(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?

(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.

*26.解:(1)抛物线经过点

·························································································· 1分

二次函数的解析式为:·················································· 3分

(2)为抛物线的顶点,则

··················································· 4分

时,四边形是平行四边形

················································ 5分

时,四边形是直角梯形

(如果没求出可由)

····························································································· 6分

时,四边形是等腰梯形

综上所述:当、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.·· 7分

(3)由(2)及已知,是等边三角形

,则········································································· 8分

=·································································································· 9分

时,的面积最小值为··································································· 10分

此时

······················································ 11分

试题详情

26.(2009年重庆市)已知:如图,在平面直角坐标系中,矩形OABC的边OAy轴的正半轴上,OCx轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点DDEDC,交OA于点E

(1)求过点EDC的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQAB的交点P与点CG构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

 

试题详情

25.(2009年北京)如图,在平面直角坐标系中,三个机战的坐标分别为

,延长AC到点D,使CD=,过点D作DE∥AB交BC的延长线于点E.

(1)求D点的坐标;

(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;

(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)

试题详情


同步练习册答案