精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中作等边△AEF,则∠AFB的度数为


A. 40°
B. 75°
C. 50°
D. 55°
相关习题

科目:初中数学 来源:专项题 题型:单选题

如图,在正方形ABCD中作等边△AEF,则∠AFB的度数为
[     ]
A. 40°
B. 75°
C. 50°
D. 55°

查看答案和解析>>

科目:初中数学 来源:2012年贵州省毕节地区中考数学试卷(解析版) 题型:选择题

如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作.若△AEF的边长为2,则阴影部分的面积约是( )
(参考数据:,π取3.14)

A.0.64
B.1.64
C.1.68
D.0.36

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作数学公式.若△AEF的边长为2,则阴影部分的面积约是
(参考数据:数学公式数学公式,π取3.14)


  1. A.
    0.64
  2. B.
    1.64
  3. C.
    1.68
  4. D.
    0.36

查看答案和解析>>

科目:初中数学 来源:贵州省中考真题 题型:单选题

如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作EF。若△AEF的边长为2,则阴影部分的面积约是
(参考数据:,π取3.14)
[     ]
A.  0.64        
B.  1.64        
C.  1.68      
D.  0.36

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•毕节地区)如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作
EF
.若△AEF的边长为2,则阴影部分的面积约是(  )
(参考数据:
2
≈1.414
3
≈1.732
,π取3.14)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

29、阅读探究题:数学课上,张老师向大家介绍了等腰三角形的基本知识:有两条边相等的三角形叫等腰三角形,如图1所示:在△ABC中,若AB=AC,则△ABC为等腰三角形且有∠B=∠C.此时,张老师出示了问题:如图2,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在线段AB上取AB的中点M,连接ME,则AM=EC,在此基础上,请聪明的同学们作进一步的研究:
(1)求出角∠AME的度数;
(2)你能在小明的思路下证明结论吗?
(3)小颖提出:如图3,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读探究题:

数学课上,张老师向大家介绍了等腰三角形的基本知识:有两条边相等的三角形叫等腰三角形,如图1所示:在△ABC中,若AB=AC,则△ABC为等腰三角形且有∠B=∠C.此时,张老师出示了问题:如图2,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在线段AB上取AB的中点M,连接ME,则AM=EC,在此基础上,请聪明的同学们作进一步的研究:
(1)求出角∠AME的度数;
(2)你能在小明的思路下证明结论吗?
(3)小颖提出:如图3,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)再(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是______;
结论2:DM、MN的位置关系是______;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年山西省中考适应性训练数学试卷(解析版) 题型:解答题

操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)再(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是______;
结论2:DM、MN的位置关系是______;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省盐城市盐都区中考数学一模试卷(解析版) 题型:解答题

操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)再(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是______;
结论2:DM、MN的位置关系是______;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>


同步练习册答案