精英家教网 > 初中数学 > 题目详情
(2012•毕节地区)如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作
EF
.若△AEF的边长为2,则阴影部分的面积约是(  )
(参考数据:
2
≈1.414
3
≈1.732
,π取3.14)
分析:先根据直角边和斜边相等,证出△ABE≌△ADF,得到△ECF为等腰直角三角形,求出S△ECF、S扇形AEF、S△AEF的面积,S△ECF-S弓形EGF即可得到阴影部分面积.
解答:解:∵AE=AF,AB=AD,
∴△ABE≌△ADF(Hl),
∴BE=DF,
∴EC=CF,
又∵∠C=90°,
∴△ECF是等腰直角三角形,
∴EC=EFcos45°=2×
2
2
=
2

∴S△ECF=
1
2
×
2
×
2
=1,
又∵S扇形AEF=
60
360
π22=
2
3
π,S△AEF=
1
2
×2×2sin60°=
1
2
×2×2×
3
2
=
3

又∵S弓形EGF=S扇形AEF-S△AEF=
2
3
π-
3

∴S阴影=S△ECF-S弓形EGF=1-(
2
3
π-
3
)≈0.64.
故选A.
点评:本题考查了扇形面积的计算,全等三角形的判定与性质、等边三角形的性质、等腰直角三角形、正方形的性质,将阴影部分面积转化为S△ECF-S弓形EGF是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•毕节地区)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.
(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是
平行四边
平行四边
形;
(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为
90
90
度;连接CC′,四边形CDBC′是
直角梯
直角梯
形;
(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•毕节地区)毕节市某地盛产天麻,为了解今年这个地方天麻的收成情况,特调查了20户农户,数据如下:(单位:千克)则这组数据的(  )
300   200   150   100    500   100    350    500    300    400
150   400   200   350    300   200    150    100    450    500.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•毕节地区)如图,双曲线y=
k
x
(k≠0)
上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为
y=-
4
x
y=-
4
x

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•毕节地区)某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•毕节地区)下列计算正确的是(  )

查看答案和解析>>

同步练习册答案