精英家教网 > 高中数学 > 题目详情
在正四棱锥P-ABCD中,M、N分别为PA、PB的中点,且侧面与底面所成二面角的正切值为,则异面直线DM与AN所成角的余弦值为

A.
B.
C.
D.
相关习题

科目:高中数学 来源:北京高考真题 题型:单选题

在正四棱锥P-ABCD中,M、N分别为PA、PB的中点,且侧面与底面所成二面角的正切值为,则异面直线DM与AN所成角的余弦值为
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
(1)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面图形的面积.
(2)图3中,L、E均为棱PB上的点,且
BE
EP
=1,
BL
LP
=5
,M、N分别为棱PA、PD的中点,问在底面正方形的对角线AC上是否存在一点F,使EF∥平面LMN.若存在,请具体求出CF的长度;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥AMN;
(2)在线段PD上是否存在一点E,使得MN∥面ACE?若存在,求出PE的长,若不存在,说明理由.
(3)求二面角A-PD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分别为PA、BC的中点,且PD=
2
,CD=1
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD;
(3)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:2013届天津市高二上学期期中考试理科数学试卷 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.

(1)求证:PB⊥DM;

(2)求CD与平面ADMN所成角的正弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥AMN;
(2)在线段PD上是否存在一点E,使得MN∥面ACE?若存在,求出PE的长,若不存在,说明理由.
(3)求二面角A-PD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分别为PA、BC的中点,且PD=AD=数学公式,CD=1
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD;
(3)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市西城区(南区)高二(上)期末数学试卷(文科)(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分别为PA、BC的中点,且PD=AD=,CD=1
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD;
(3)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙市长郡中学高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

如图:在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
(1)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面图形的面积.
(2)图3中,L、E均为棱PB上的点,且,M、N分别为棱PA、PD的中点,问在底面正方形的对角线AC上是否存在一点F,使EF∥平面LMN.若存在,请具体求出CF的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市西城区(南区)高二(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分别为PA、BC的中点,且PD=AD=,CD=1
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD;
(3)求三棱锥P-ABC的体积.

查看答案和解析>>


同步练习册答案